论文标题
雅各布森 - 沃特代数的2个本地派生中的主要特征
2-local derivations on the Jacobson-Witt algebras in prime characteristic
论文作者
论文摘要
本文启动了对主要特征领域的谎言代数的2个局部衍生物的研究。让$ \ mathfrak {g} $成为一个简单的jacobson-witt代数$ w_n $,在主要特征$ p $的字段上,基数不少于$ p^n $。在本文中,我们研究了$ \ mathfrak {g} $上2个本地派生的属性,并证明$ \ mathfrak {g} $上的每个2个局部派生都是一个派生。
This paper initiates the study of 2-local derivations on Lie algebras over fields of prime characteristic. Let $\mathfrak{g}$ be a simple Jacobson-Witt algebra $W_n$ over a field of prime characteristic $p$ with cardinality no less than $p^n$. In this paper, we study properties of 2-local derivations on $\mathfrak{g}$, and show that every 2-local derivation on $\mathfrak{g}$ is a derivation.