论文标题

两种手臂随机前孔设计的统计分析,并进行了一次治疗后测量

Statistical analysis of two arm randomized pre-post design with one post-treatment measurement

论文作者

Wan, Fei

论文摘要

在基线和随访时测量结果的随机前post设计通常用于比较两种竞争性治疗的临床有效性。在当前文献中,有关庞大的信息有很多,但通常是相互矛盾的,这些信息量有关前post设计的最佳分析方法。应用研究人员做出明智的选择是一个挑战。我们讨论了文献中常用的六种方法:方差分析(ANOVA),协方差的主要效果和相互作用模型对治疗后测量(ANCOVA I和II)(ANCOVA I和II),基线和治疗后测量之间的变化分数的方差分析,重复测量的重复测量和约束重复测量模型(CRM)对基础和后的衡量措施,并将其用于实现效果。我们回顾了验证前设计中的许多研究终点,并确定治疗后测量的差异是所有六种方法针对的常见治疗效果。我们描述了这些竞争方法和异质研究人群中这些竞争方法之间的潜在差异和联系。我们证明,ANCOVA和CRM优于其他选择,因为它们的治疗效果估计器的差异最小。 CRM在同质方案中具有与ANCOVA I主要效应模型的可比性,并且与异质场景中的Ancova II相互作用模型相当。尽管如此,ANCOVA比CRM具有多个优点,包括将基线测量视为协变量,因为它不是定义上的结果,这是在线性回归框架中纳入其他基线变量和处理复杂的异质性模式的便利性。

Randomized pre-post designs, with outcomes measured at baseline and follow-ups, have been commonly used to compare the clinical effectiveness of two competing treatments. There are vast, but often conflicting, amount of information in current literature about the best analytic methods for pre-post design. It is challenging for applied researchers to make an informed choice. We discuss six methods commonly used in literature: one way analysis of variance (ANOVA), analysis of covariance main effect and interaction models on post-treatment measurement (ANCOVA I and II), ANOVA on change score between baseline and post-treatment measurements, repeated measures and constrained repeated measures models (cRM) on baseline and post-treatment measurements as joint outcomes. We review a number of study endpoints in pre-post designs and identify the difference in post-treatment measurement as the common treatment effect that all six methods target. We delineate the underlying differences and links between these competing methods in homogeneous and heterogeneous study population. We demonstrate that ANCOVA and cRM outperform other alternatives because their treatment effect estimators have the smallest variances. cRM has comparable performance to ANCOVA I main effect model in homogeneous scenario and to ANCOVA II interaction model in heterogeneous scenario. In spite of that, ANCOVA has several advantages over cRM, including treating baseline measurement as covariate because it is not an outcome by definition, the convenience of incorporating other baseline variables and handling complex heteroscedasticity patterns in a linear regression framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源