论文标题
同型转移和有效的现场理论I:树级
Homotopy Transfer and Effective Field Theory I: Tree-level
论文作者
论文摘要
我们使用一般字段理论和强烈同质代数之间的字典来提供代数的表述,以在同义转移方面融合了自由度的过程。这包括更一般的有效理论,其中保留了一些大规模模式,而其他类似的质量尺度模式则被整合在一起,如Sen在封闭的弦字段理论的背景下首次探讨的那样。我们在尼尔氏代码启动和双重空间上,就nilpotent推导(对应于田间理论的BR荷)而言,我们将$ l_ \ infty $ - 代数处理$ l_ \ infty $ - 代数。然后,这些证明是在树级上控制自由度的集成程度,而对循环级别的概括将在本文的续集中探索。
We use the dictionary between general field theories and strongly homotopy algebras to provide an algebraic formulation of the procedure of integrating out of degrees of freedom in terms of homotopy transfer. This includes more general effective theories in which some massive modes are kept while other modes of a comparable mass scale are integrated out, as first explored by Sen in the context of closed string field theory. We treat $L_\infty$-algebras both in terms of a nilpotent coderivation and, on the dual space, in terms of a nilpotent derivation (corresponding to the BRST charge of the field theory) and provide explicit formulas for homotopy transfer. These are then shown to govern the integrating out of degrees of freedom at tree level, while the generalization to loop level will be explored in a sequel to this paper.