论文标题

在确保公平的同时最大化覆盖范围:一个相互矛盾的目标的故事

Maximizing coverage while ensuring fairness: a tale of conflicting objective

论文作者

Asudeh, Abolfazl, Berger-Wolf, Tanya, DasGupta, Bhaskar, Sidiropoulos, Anastasios

论文摘要

在近年来,确保计算问题的公平性已成为一个$ $ $主题,并受到对公平资源分配和社会正义的考虑。从几个角度(例如使用优化,游戏理论或机器学习框架)将公平性纳入计算问题是可能的。在本文中,我们解决了从$ Combinatorial $ $优化$ perspective纳入公平性的问题。我们制定了一个组合优化框架,适用于研究人员在近似算法和相关领域的分析,该框架将最大覆盖率问题的公平性纳入了$两个$ $矛盾的目标之间的相互作用。通过使用$将$最小化$最小化的$最小化$覆盖的不同颜色元素数量的差异的颜色约束,从而在覆盖范围内实现了公平。这与通常在文献中广泛研究的通常的差异最小化问题相反,在文献中(通常两种)颜色为$ $ $ $ $ $ $ priori $,但需要选择以最大程度地减少$ $ $ $ nyse套装的最大颜色差异。我们的主要结果是一组随机和确定性的近似算法,这些算法试图同时$ $ $ $近似于此框架中的公平和覆盖范围。

Ensuring fairness in computational problems has emerged as a $key$ topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It $is$ possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In this paper we address the problem of incorporation of fairness from a $combinatorial$ $optimization$ perspective. We formulate a combinatorial optimization framework, suitable for analysis by researchers in approximation algorithms and related areas, that incorporates fairness in maximum coverage problems as an interplay between $two$ conflicting objectives. Fairness is imposed in coverage by using coloring constraints that $minimizes$ the discrepancies between number of elements of different colors covered by selected sets; this is in contrast to the usual discrepancy minimization problems studied extensively in the literature where (usually two) colors are $not$ given $a$ $priori$ but need to be selected to minimize the maximum color discrepancy of $each$ individual set. Our main results are a set of randomized and deterministic approximation algorithms that attempts to $simultaneously$ approximate both fairness and coverage in this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源