论文标题
Johnson-Segman/Gordon-Schowalter模型的弱非线性响应和非植物解释
The weakly nonlinear response and non-affine interpretation of the Johnson-Segalman/Gordon-Schowalter model
论文作者
论文摘要
我们得出了针对非疗法约翰逊 - 塞加尔曼/戈登 - 索瓦尔特(JS/GS)本构方程的新分析解决方案,并在中等振幅振荡剪切(MAOS)变形中具有一般弛豫内核。结果表明,时间应变可分离(TSS)的非线性,因此为MAOS中的启发式TSS非线性参数提供了新的物理性解释(Martinetti&EwoldtPhys。Fl。(2019))。上面有上限的,较低的和旋转的麦克斯韦模型都是此处介绍的结果的子集。该模型假定与连续变形相比,显微镜元件在材料滑移中引起应力。我们介绍了非伴随变形场的可视化,该字段作用于应力生成元素,以加强对JS/GS类别类别的物理解释。最后,介绍了一个案例研究,即可以根据JS/GS框架的非伴随运动概念重新解释先前发表的结果,从拟合TSS模型到MAOS数据。
We derive new analytical solutions for the non-affine Johnson-Segalman/Gordon-Schowalter (JS/GS) constitutive equation with a general relaxation kernel in medium-amplitude oscillatory shear (MAOS) deformation. The results show time-strain separable (TSS) nonlinearity, therefore providing new physically-meaningful interpretation to the heuristic TSS nonlinear parameter in MAOS (Martinetti & Ewoldt Phys. Fl. (2019)). The upper-convected, lower-convected, and corotational Maxwell models are all subsets of the results presented here. The model assumes that the microscale elements causing stress in the material slip compared to the continuum deformation. We introduce a visualization of the non-affine deformation field that acts on stress-generating elements to reinforce the physical interpretation of the JS/GS class of models. Finally, a case study is presented where previously published results, from fitting TSS models to MAOS data, can be re-interpreted based on the concept of non-affine motion of the JS/GS framework.