论文标题
使用社区特定的语言特征和个人价值相关性预测社交媒体用户的个人价值
On Predicting Personal Values of Social Media Users using Community-Specific Language Features and Personal Value Correlation
论文作者
论文摘要
个人价值观对个人的行为,偏好和决策产生重大影响。因此,一个人的个人价值观会影响其社交媒体内容和活动并不奇怪。研究人员没有让用户完成个人价值问卷,而是研究了一种非侵入性且高度可扩展的方法,可以使用用户生成的社交媒体数据来预测个人价值。然而,在设计此类预测模型时,单词用法和配置信息信息的地理差异是要解决的问题。在这项工作中,我们专注于分析新加坡用户的个人价值观,并开发有效的模型,以使用其Facebook数据来预测其个人价值。这些模型在语言查询和单词计数(LIWC)中利用单词类别以及个人价值观之间的相关性。 LIWC单词类别适用于新加坡的非英语单词使用。我们将个人值之间的相关性纳入我们提出的堆栈模型中,该模型由特定于任务的基本模型和跨缝度层模型组成。通过实验,我们表明我们所提出的模型可以预测个人价值,并且对以前的工作的准确性有了可观的提高。此外,我们使用堆栈模型使用其公共推文内容来预测大型Twitter用户的个人价值观,并经验得出了一些有关其在线行为的有趣发现,这些发现与社会科学和社交媒体文献中的早期发现一致。
Personal values have significant influence on individuals' behaviors, preferences, and decision making. It is therefore not a surprise that personal values of a person could influence his or her social media content and activities. Instead of getting users to complete personal value questionnaire, researchers have looked into a non-intrusive and highly scalable approach to predict personal values using user-generated social media data. Nevertheless, geographical differences in word usage and profile information are issues to be addressed when designing such prediction models. In this work, we focus on analyzing Singapore users' personal values, and developing effective models to predict their personal values using their Facebook data. These models leverage on word categories in Linguistic Inquiry and Word Count (LIWC) and correlations among personal values. The LIWC word categories are adapted to non-English word use in Singapore. We incorporate the correlations among personal values into our proposed Stack Model consisting of a task-specific layer of base models and a cross-stitch layer model. Through experiments, we show that our proposed model predicts personal values with considerable improvement of accuracy over the previous works. Moreover, we use the stack model to predict the personal values of a large community of Twitter users using their public tweet content and empirically derive several interesting findings about their online behavior consistent with earlier findings in the social science and social media literature.