论文标题
与各种杂物更新时间有关的全动态算法
Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time
论文作者
论文摘要
背包问题是优化中最根本的问题之一。在多个背包问题中,我们给出了多个背包,具有不同的能力和物品,具有值和尺寸。任务是找到最大总值的子集,可以将可以包装到背包中,而不会超过容量。我们在动态算法和设计数据结构的背景下研究了此问题及其特殊情况,这些算法有效地维护了近乎最佳的背包解决方案,以动态更改输入。更确切地说,我们在执行算法期间处理单个项目或背包的到达和出发,其中最差的更新时间polygarithmic在项目数量中。由于最佳和任何近似解决方案可能会发生巨大变化,因此我们仅维护隐式解决方案并支持各个群体中的某些查询,例如项目的包装和解决方案值。尽管在图形问题的背景下进行了充分研究的动态算法,但几乎没有任何关于包装问题的工作,而在非刻画问题上通常没有什么。鉴于对背包问题的理论兴趣及其实际相关性,令人惊讶的是,在动态算法的背景下,诺帕克(Knapsack)并未解决,而我们的工作却弥合了这一差距。
Knapsack problems are among the most fundamental problems in optimization. In the Multiple Knapsack problem, we are given multiple knapsacks with different capacities and items with values and sizes. The task is to find a subset of items of maximum total value that can be packed into the knapsacks without exceeding the capacities. We investigate this problem and special cases thereof in the context of dynamic algorithms and design data structures that efficiently maintain near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the arrival and departure of individual items or knapsacks during the execution of the algorithm with worst-case update time polylogarithmic in the number of items. As the optimal and any approximate solution may change drastically, we only maintain implicit solutions and support certain queries in polylogarithmic time, such as the packing of an item and the solution value. While dynamic algorithms are well-studied in the context of graph problems, there is hardly any work on packing problems and generally much less on non-graph problems. Given the theoretical interest in knapsack problems and their practical relevance, it is somewhat surprising that Knapsack has not been addressed before in the context of dynamic algorithms and our work bridges this gap.