论文标题

有效的精确算法,用于两分图中最大平衡双质搜索

Efficient Exact Algorithms for Maximum Balanced Biclique Search in Bipartite Graphs

论文作者

Chen, Lu, Liu, Chengfei, Zhou, Rui, Xu, Jiajie, Li, Jianxin

论文摘要

给定两分图,最大平衡的双质(\ textsf {mbb})问题,发现相互连接的同等尺寸的分离设置具有最大的基数,这对于挖掘双方图形并具有大量应用起着重要作用。尽管\ textsf {mbb}问题的NP硬度,但在本文中,我们表明,在两部分图中,对于真实应用程序,可以非常快地发现了一个精确的\ textsf {mbb}。我们提出了两种专门用于致密和稀疏的两分图的精确算法。对于密集的两分图,提出了$ \ mathcal {o}^{*}(1.3803^{n})$算法。实际上,该算法可以在近乎多项式的时间内找到一个\ textsf {mbb},以用于诸如VLSI设计等应用程序的密集两分图。这是因为,使用我们提出的新型技术,搜索可以快速收敛到足够密集的两分图,我们证明可以在多个方面解决。对于诸如生物数据分析等应用的典型稀疏二手图,提出了$ \ MATHCAL {O}^{*}(1.3803^{\ddotΔ})$算法,其中$ \ddotδ$仅用于大型稀疏的Bipartite图形上的$ \ddotδ$,与Millions cormions of Vertices相比。导致这段时间复杂性的不可或缺的优化是:我们将大型稀疏的两部分图转换为有限数量的密集子图,大小高达$ \ddotδ$,然后应用我们的拟议算法,以在每个子图上的密集两部分图形中使用我们的拟议算法。为了进一步加快该算法,提出了更紧密的上限,提出了更快的启发式和有效的减少,从而在几秒钟内发现了\ textsf {mbb},以供数百万个顶点的双分式图形。大量实验是在合成和真正的大两分图上进行的,以证明我们提出的算法和技术的效率和有效性。

Given a bipartite graph, the maximum balanced biclique (\textsf{MBB}) problem, discovering a mutually connected while equal-sized disjoint sets with the maximum cardinality, plays a significant role for mining the bipartite graph and has numerous applications. Despite the NP-hardness of the \textsf{MBB} problem, in this paper, we show that an exact \textsf{MBB} can be discovered extremely fast in bipartite graphs for real applications. We propose two exact algorithms dedicated for dense and sparse bipartite graphs respectively. For dense bipartite graphs, an $\mathcal{O}^{*}( 1.3803^{n})$ algorithm is proposed. This algorithm in fact can find an \textsf{MBB} in near polynomial time for dense bipartite graphs that are common for applications such as VLSI design. This is because, using our proposed novel techniques, the search can fast converge to sufficiently dense bipartite graphs which we prove to be polynomially solvable. For large sparse bipartite graphs typical for applications such as biological data analysis, an $\mathcal{O}^{*}( 1.3803^{\ddotδ})$ algorithm is proposed, where $\ddotδ$ is only a few hundreds for large sparse bipartite graphs with millions of vertices. The indispensible optimizations that lead to this time complexity are: we transform a large sparse bipartite graph into a limited number of dense subgraphs with size up to $\ddotδ$ and then apply our proposed algorithm for dense bipartite graphs on each of the subgraphs. To further speed up this algorithm, tighter upper bounds, faster heuristics and effective reductions are proposed, allowing an \textsf{MBB} to be discovered within a few seconds for bipartite graphs with millions of vertices. Extensive experiments are conducted on synthetic and real large bipartite graphs to demonstrate the efficiency and effectiveness of our proposed algorithms and techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源