论文标题

Maxwell方程的非线性双重性不变的共形延伸

A non-linear duality-invariant conformal extension of Maxwell's equations

论文作者

Bandos, Igor, Lechner, Kurt, Sorokin, Dmitri, Townsend, Paul K.

论文摘要

发现了无源的麦克斯韦方程的所有非线性扩展,均可(2)电磁双重性不变性和保形不变性,并证明是出生式污染电动力学的单参数概括的限制。强场极限与Bialynicki-Birula在Born-Born-Infeld理论中发现的极限相同,但是弱场极限是Maxwell电动力学的新的一参数扩展,该参数正在相互作用,但可以接受任意极化的精确光速平面波。在恒定均匀电磁背景上的小振幅波呈双折,但一种极化模式保持光明。

All nonlinear extensions of the source-free Maxwell equations preserving both SO(2) electromagnetic duality invariance and conformal invariance are found, and shown to be limits of a one-parameter generalisation of Born-Infeld electrodynamics. The strong-field limit is the same as that found by Bialynicki-Birula from Born-Infeld theory but the weak-field limit is a new one-parameter extension of Maxwell electrodynamics, which is interacting but admits exact light-velocity plane-wave solutions of arbitrary polarisation. Small-amplitude waves on a constant uniform electromagnetic background exhibit birefringence, but one polarisation mode remains lightlike.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源