论文标题
自由能通量和Kubo-Martin-Schinger关系
Free energy fluxes and the Kubo-Martin-Schwinger relation
论文作者
论文摘要
一般的多组分欧拉流体理论是一组非线性的双曲分节微分方程。但是,如果流体是对短距离多体系统的大规模描述,则对这些方程的结构产生了进一步的限制。在这里,我们得出了一个与自由能通量有关的约束。自由能通量产生电流的预期值,类似于特定的自由能产生保守的密度。他们固定状态和欧拉级流体动力学的方程,与熵电流有关。使用与许多保守量相关的库博 - 马丁绳索关系,在量子和古典系统中,我们表明相关的自由能通量垂直于表征状态的反度逆温度向量。这意味着所有熵电流都可以表示为局部可观察物的平均值。在少数组件的流体中,这意味着电流的平均值仅来自特定的自由能,而无需使用伽利略或相对论不变性。在可集成的模型中,这意味着热力学的伯特·安萨兹必须满足单位性条件。该关系还保证了欧拉水动力学在空间均匀的,宏观外部田地中的身体一致性,这意味着熵的保护,局部密度近似平稳状态的局部密度近似吉布斯形式。自由能通量的主要结果是基于诸如聚类之类的一般特性,我们表明它在量子自旋链中在数学上是严格的。
A general, multi-component Eulerian fluid theory is a set of nonlinear, hyperbolic partial differential equations. However, if the fluid is to be the large-scale description of a short-range many-body system, further constraints arise on the structure of these equations. Here we derive one such constraint, pertaining to the free energy fluxes. The free energy fluxes generate expectation values of currents, akin to the specific free energy generating conserved densities. They fix the equations of state and the Euler-scale hydrodynamics, and are simply related to the entropy currents. Using the Kubo-Martin-Schwinger relations associated to many conserved quantities, in quantum and classical systems, we show that the associated free energy fluxes are perpendicular to the vector of inverse temperatures characterising the state. This implies that all entropy currents can be expressed as averages of local observables. In few-component fluids, it implies that the averages of currents follow from the specific free energy alone, without the use of Galilean or relativistic invariance. In integrable models, in implies that the thermodynamic Bethe ansatz must satisfy a unitarity condition. The relation also guarantees physical consistency of the Euler hydrodynamics in spatially-inhomogeneous, macroscopic external fields, as it implies conservation of entropy, and the local-density approximated Gibbs form of stationarity states. The main result on free energy fluxes is based on general properties such as clustering, and we show that it is mathematically rigorous in quantum spin chains.