论文标题
MIMO-OFDM的良好时间和频率同步:一种极端的学习方法
Fine Timing and Frequency Synchronization for MIMO-OFDM: An Extreme Learning Approach
论文作者
论文摘要
在下一代通信中,多输入多输出的正交频划分多路复用(MIMO-OFDM)是向认知无线电(CR)进化的关键技术组成部分,在下一代通信中,时间和频率同步的准确性显着影响整体系统性能。在本文中,我们提出了一种利用极限学习机(ELM)的新方案,以实现高精度同步。具体而言,通过同步偏移利用前序信号,将两个ELMS纳入传统的MIMO-OFDM系统中,以估算残留符号正时偏移量(RSTO)和残留载体频率偏移(RCFO)。仿真结果表明,在加性白色高斯噪声(AWGN)和频率选择性褪色通道下,提出的基于ELM的同步方案的性能优于传统方法。此外,与现有的基于机器学习的技术相比,所提出的方法显示出出色的性能,而无需完美的渠道状态信息(CSI)和过度的计算复杂性。最后,提出的方法在选择通道参数(例如路径数)以及从机器学习的角度方面的“概括能力”方面具有鲁棒性。
Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is a key technology component in the evolution towards cognitive radio (CR) in next-generation communication in which the accuracy of timing and frequency synchronization significantly impacts the overall system performance. In this paper, we propose a novel scheme leveraging extreme learning machine (ELM) to achieve high-precision synchronization. Specifically, exploiting the preamble signals with synchronization offsets, two ELMs are incorporated into a traditional MIMO-OFDM system to estimate both the residual symbol timing offset (RSTO) and the residual carrier frequency offset (RCFO). The simulation results show that the performance of the proposed ELM-based synchronization scheme is superior to the traditional method under both additive white Gaussian noise (AWGN) and frequency selective fading channels. Furthermore, comparing with the existing machine learning based techniques, the proposed method shows outstanding performance without the requirement of perfect channel state information (CSI) and prohibitive computational complexity. Finally, the proposed method is robust in terms of the choice of channel parameters (e.g., number of paths) and also in terms of "generalization ability" from a machine learning standpoint.