论文标题
球形$ p $ -spin型号的马鞍数
The number of saddles of the spherical $p$-spin model
论文作者
论文摘要
我们表明,当两者均为正时,球形纯$ p $ -spin模型的马鞍的复杂性与退火的复杂性一致。确切地说,我们表明,在给定间隔中给定有限索引的临界值数量的第二刻是第一瞬间的增长率的两倍。
We show that the quenched complexity of saddles of the spherical pure $p$-spin model agrees with the annealed complexity when both are positive. Precisely, we show that the second moment of the number of critical values of a given finite index in a given interval has twice the growth rate of the first moment.