论文标题

飞机上有色点套装的彩虹多边形

Rainbow polygons for colored point sets in the plane

论文作者

Flores-Peñaloza, David, Kano, Mikio, Martínez-Sandoval, Leonardo, Orden, David, Tejel, Javier, Tóth, Csaba D., Urrutia, Jorge, Vogtenhuber, Birgit

论文摘要

给定平面中的彩色点设置,完美的彩虹多边形是一个简单的多边形,在内部或边界上完全包含每种颜色的一个点。 Let $\operatorname{rb-index}(S)$ denote the smallest size of a perfect rainbow polygon for a colored point set $S$, and let $\operatorname{rb-index}(k)$ be the maximum of $\operatorname{rb-index}(S)$ over all $k$-colored point sets in general position;也就是说,每个$ k $颜色的点seet $ s $都有一个完美的彩虹多边形,最多只能使用$ \ operatatorName {rb-index}(k)$ vertices。在本文中,我们确定$ \ operatoTorname {rb-index}(k)$最高$ k = 7 $的值,这是$ \ operatotorname {rb-index}(k)\ neq k $的第一种情况,我们证明了$ k \ ge 5 $,\ ge [\ freac [\ freac \ freac \ frac {40 \ lfloor(rfloor)/\ rfloor(k) -8} {19}%birgit:\ leq \ operatorName {rb-index}(k)\ leq 10 \ bigg \ bigg \ lfloor \ frac {k} {7} \ bigg \ big \ big \ big \ rfloor + 11。 $ 10 \ lfloor \ frac {k} {7} \ rfloor + 11 $顶点可以在$ o(n \ log n)$时间中计算。

Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let $\operatorname{rb-index}(S)$ denote the smallest size of a perfect rainbow polygon for a colored point set $S$, and let $\operatorname{rb-index}(k)$ be the maximum of $\operatorname{rb-index}(S)$ over all $k$-colored point sets in general position; that is, every $k$-colored point set $S$ has a perfect rainbow polygon with at most $\operatorname{rb-index}(k)$ vertices. In this paper, we determine the values of $\operatorname{rb-index}(k)$ up to $k=7$, which is the first case where $\operatorname{rb-index}(k)\neq k$, and we prove that for $k\ge 5$, \[ \frac{40\lfloor (k-1)/2 \rfloor -8}{19} %Birgit: \leq\operatorname{rb-index}(k)\leq 10 \bigg\lfloor\frac{k}{7}\bigg\rfloor + 11. \] Furthermore, for a $k$-colored set of $n$ points in the plane in general position, a perfect rainbow polygon with at most $10 \lfloor\frac{k}{7}\rfloor + 11$ vertices can be computed in $O(n\log n)$ time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源