论文标题
使用网络定位算法进行数字触点记录应用程序的摩托车间设备距离估计
Inter-Mobile-Device Distance Estimation using Network Localization Algorithms for Digital Contact Logging Applications
论文作者
论文摘要
正在开发移动应用程序,以通过蓝牙自动记录联系人,以帮助在持续的Covid-19大流行中扩大数字接触跟踪工作。此类应用程序的一个有用组成部分是设备间距离估计,可以将其作为网络定位问题配方。我们对几种方法进行了调查,并评估每个方法在真实和模拟的蓝牙低能(BLE)测量数据集上的性能,以相对于距离估计的精度和接近度检测问题。我们研究了障碍物,诸如口袋,设备模型之间的差异以及环境(即室内或室外)的影响。我们得出的结论是,虽然当获得接收信号强度指标(RSSI)测量值时,直接估计可以提供最佳的接近性检测,但在缺少或非常嘈杂的测量值的情况下,网络定位算法(例如ISOMAP,局部线性嵌入)等网络定位算法优于直接估计。春季模型始终达到最佳距离估计精度。
Mobile applications are being developed for automated logging of contacts via Bluetooth to help scale up digital contact tracing efforts in the context of the ongoing COVID-19 pandemic. A useful component of such applications is inter-device distance estimation, which can be formulated as a network localization problem. We survey several approaches and evaluate the performance of each on real and simulated Bluetooth Low Energy (BLE) measurement datasets with respect to both distance estimate accuracy and the proximity detection problem. We investigate the effects of obstructions like pockets, differences between device models, and the environment (i.e. indoors or outdoors) on performance. We conclude that while direct estimation can provide the best proximity detection when Received Signal Strength Indicator (RSSI) measurements are available, network localization algorithms like Isomap, Local Linear Embedding, and the spring model outperform direct estimation in the presence of missing or very noisy measurements. The spring model consistently achieves the best distance estimation accuracy.