论文标题
样本,量化和编码:及时估计噪声通道
Sample, Quantize and Encode: Timely Estimation Over Noisy Channels
论文作者
论文摘要
量化和编码对高斯 - 马尔科夫过程估计质量的影响被考虑,并特别注意了Ornstein-Uhlenbeck过程。从该过程中获取样品,量化,然后使用无限的增量冗余(IIR)或固定冗余(FR)编码方案进行编码。接收器消耗固定的处理时间,以解码并将反馈发送给发射器。解码的消息用于构建该过程的最小均值误差(MMSE)估计,作为时间的函数。这被证明是信息年龄(AOI)的越来越多的功能,定义为自采样时间以来与最新成功解码消息有关的时间以来所经过的时间。这种功能取决于量化位,代码字的长度和接收器处理时间。对于每个编码方案,目标是优化采样时间,以使长期平均MMSE最小化。然后,这是在AOI的一般功能的设置中的特征,不一定与MMSE相对应,MMSE在其他情况下可能具有独立的兴趣。 我们首先表明,IIR的最佳采样策略是在AOI超过一定阈值的情况下才能生成新样本,而对于FR来说,随着接收器完成了前一个处理,因此将新的样本交付了很快。然后开发增强的传输方案,以利用处理时间以使新数据更快地提供。对于IIR和FR,这表明存在平衡AOI和量化误差的最佳量化位,因此可以最大程度地减少MMSE。还表明,对于更长的接收器处理时间,相对简单的FR方案优于IIR。
The effects of quantization and coding on the estimation quality of Gauss-Markov processes are considered, with a special attention to the Ornstein-Uhlenbeck process. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite incremental redundancy (IIR) or fixed redundancy (FR) coding schemes. A fixed processing time is consumed at the receiver for decoding and sending feedback to the transmitter. Decoded messages are used to construct a minimum mean square error (MMSE) estimate of the process as a function of time. This is shown to be an increasing functional of the age-of-information (AoI), defined as the time elapsed since the sampling time pertaining to the latest successfully decoded message. Such functional depends on the quantization bits, codewords lengths and receiver processing time. The goal, for each coding scheme, is to optimize sampling times such that the long-term average MMSE is minimized. This is then characterized in the setting of general increasing functionals of AoI, not necessarily corresponding to MMSE, which may be of independent interest in other contexts. We first show that the optimal sampling policy for IIR is such that a new sample is generated only if the AoI exceeds a certain threshold, while for FR it is such that a new sample is delivered just-in-time as the receiver finishes processing the previous one. Enhanced transmissions schemes are then developed in order to exploit the processing times to make new data available at the receiver sooner. For both IIR and FR, it is shown that there exists an optimal number of quantization bits that balances AoI and quantization errors, and hence minimizes the MMSE. It is also shown that for longer receiver processing times, the relatively simpler FR scheme outperforms IIR.