论文标题
开发快速数值密度功能理论方法,用于研究纳米多孔材料的结构
Development of fast numerical density functional theory methods for studying the structures of nanoporous materials
论文作者
论文摘要
密度功能理论(DFT)已被积极使用和开发。 DFT是描述各种纳米级现象的有效仪器:润湿过渡,毛细管冷凝,吸附等。在这项工作中,我们建议一种使用DFT在孔中获得平衡流体密度的方法,而无需计算自由能变化 - 自由密度功能理论(VF -DFT)。该技术适用于探索具有复杂相互作用的流体,并加快了简单流体的计算。在VF-DFT中,流体密度表示为有限的基础函数和分解系数的分解。为了构建基础功能,我们应用了主成分分析(PCA)。 PCA用于提取纳米孔中流体密度的主要模式。通过无随机梯度优化方法(例如遗传算法(GA),粒子群优化(PSO))寻求分解系数,以最大程度地减少系统的自由能。我们还建议基于随机优化方法的混合密度功能理论(H-DFT)方法以及经典的帕卡迭代方法,以在孔中找到平衡流体密度。结合这些方法有助于显着加快系统中平衡密度的计算而不会失去质量。我们考虑了两种流体:在t = 77.4 K的温度下,在孔3.6 nm处的氮和氩气87.3 k。将带有不同优化算法的VF-DFT,H-DFT彼此和经典的狂欢迭代技术进行了比较。此外,讨论了纳米多孔材料的计算孔径分布(PSD)的问题。 Tikhonov正则化方法用于从低温吸附的实验数据中重建PSD。事实证明,该方法对吸附数据的质量非常敏感。
Density functional theory (DFT) has been actively used and developed recently. DFT is an efficient instrument for describing a wide range of nanoscale phenomena: wetting transition, capillary condensation, adsorption, and others. In this work, we suggest a method for obtaining the equilibrium fluid density in a pore using DFT without calculating the free energy variation - Variation Free Density Functional Theory (VF-DFT). This technique is applicable to explore fluids with complex interactions and speed up calculations for simple fluids. In VF-DFT the fluid density is represented as a decomposition over a limited set of basis functions and decomposition coefficients. To construct basis functions, we applied principal component analysis (PCA). PCA is used to extract the main patterns of the fluid densities in the nanopore. Decomposition coefficients are sought with stochastic gradient-free optimization methods, such as genetic algorithm (GA), particle swarm optimization (PSO) to minimize the free energy of the system. We also suggest the Hybrid Density Functional Theory (H-DFT) approach based on stochastic optimization methods and the classical Piccard iteration method to find the equilibrium fluid density in the pore. Combining these methods helps to significantly speed up the calculations of equilibrium density in the system without losing quality. We considered two fluids: nitrogen at the temperature of T=77.4 K and argon 87.3 K, at the pore 3.6 nm. VF-DFT, H-DFT with different optimization algorithms were compared with each other and with classical Piccard iteration technique. Furthermore, the problem of calculation pore size distribution (PSD) for nanoporous materials is discussed. The Tikhonov regularization method was applied to reconstruct of PSD from experimental data on low-temperature adsorption. This method is proved to be very sensitive to the quality of adsorption data.