论文标题
通过(fermion)冷凝的(虚拟)指南(虚拟)指南
A (Dummy's) Guide to Working with Gapped Boundaries via (Fermion) Condensation
论文作者
论文摘要
我们研究了以2+1 d拓扑顺序为“费米子冷凝物”的特征的间隙边界。从数学上讲,这些冷凝物中的每一个都可以用超交换性的Frobenius代数来描述。我们从系统地获得了在间隙边界/交界处的激发物种,并研究它们的内态性(能够捕获Majorana fermion的能力)和融合规则,并将缺陷Verlinde公式概括为扭曲版本。我们用明确的例子说明了这些结果。我们还将这些结果与超模块化不变CFT中的拓扑缺陷联系起来。为了使我们的讨论独立,我们对相关的数学结果进行教学评论,以便没有张量的物理学家,应该能够将其捡起并随时随地应用它们
We study gapped boundaries characterized by "fermionic condensates" in 2+1 d topological order. Mathematically, each of these condensates can be described by a super commutative Frobenius algebra. We systematically obtain the species of excitations at the gapped boundary/ junctions, and study their endomorphisms (ability to trap a Majorana fermion) and fusion rules, and generalized the defect Verlinde formula to a twisted version. We illustrate these results with explicit examples. We also connect these results with topological defects in super modular invariant CFTs. To render our discussion self-contained, we provide a pedagogical review of relevant mathematical results, so that physicists without prior experience in tensor category should be able to pick them up and apply them readily