论文标题
$ su(2 | 2)$ SPIN链模型的分级偏离贝尔·贝特·贝特·安萨斯解决方案具有通用的集成边界
Graded Off-diagonal Bethe ansatz solution of the $SU(2|2)$ spin chain model with generic integrable boundaries
论文作者
论文摘要
提出了分级的非对角线ANSATZ方法来研究超对称量子整合模型(即与超级甲虫相关的量子积分模型)。例如,构建了具有周期性和通用开放边界条件的$ SU(2 | 2)$顶点模型的确切解决方案。通过将融合技术推广到超对称情况下,得出了一组有关传输矩阵的封闭的操作员产品标识,这使我们可以根据均匀或不均匀的$ t-q $关系给出特征值。本文提供的方法和结果可以推广到其他高级超对称量子整合模型。
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both periodic and generic open boundary conditions are constructed. By generalizing the fusion techniques to the supersymmetric case, a closed set of operator product identities about the transfer matrices are derived, which allows us to give the eigenvalues in terms of homogeneous or inhomogeneous $T-Q$ relations. The method and results provided in this paper can be generalized to other high rank supersymmetric quantum integrable models.