论文标题

利用立体相机数据进行实时动态障碍物检测和跟踪

Leveraging Stereo-Camera Data for Real-Time Dynamic Obstacle Detection and Tracking

论文作者

Eppenberger, Thomas, Cesari, Gianluca, Dymczyk, Marcin, Siegwart, Roland, Dubé, Renaud

论文摘要

避免动态障碍是在拥挤的环境中合规导航的一个关键组件。在本文中,我们提出了一个系统,用于使用立体声摄像机生成的嘈杂点云数据进行准确可靠的检测和跟踪。我们的解决方案具有实时的能力,专门用于在计算受限无人接地车上部署。提出的方法将机器人周围环境中的各个对象识别为静态或动态。动态对象被标记为一个人或通用动态对象。然后,我们估计它们的速度,以产生适合于避免障碍物的2D占用网格。我们在室内和室外场景中评估系统,并在消费级计算机上实现实时性能。在我们的测试数据库中,我们达到了0.07 \ pm $ 0.07万美元的MOTP,用于检测和跟踪动态对象的MOTA $ 85.3 \%$。对于检测静态对象,我们达到了$ 96.9 \%$的精度。

Dynamic obstacle avoidance is one crucial component for compliant navigation in crowded environments. In this paper we present a system for accurate and reliable detection and tracking of dynamic objects using noisy point cloud data generated by stereo cameras. Our solution is real-time capable and specifically designed for the deployment on computationally-constrained unmanned ground vehicles. The proposed approach identifies individual objects in the robot's surroundings and classifies them as either static or dynamic. The dynamic objects are labeled as either a person or a generic dynamic object. We then estimate their velocities to generate a 2D occupancy grid that is suitable for performing obstacle avoidance. We evaluate the system in indoor and outdoor scenarios and achieve real-time performance on a consumer-grade computer. On our test-dataset, we reach a MOTP of $0.07 \pm 0.07m$, and a MOTA of $85.3\%$ for the detection and tracking of dynamic objects. We reach a precision of $96.9\%$ for the detection of static objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源