论文标题
深度变分量子本素:一种用于解决较小尺寸量子计算机的较大问题的分裂和拼接方法
Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers
论文作者
论文摘要
我们为量子经典混合算法提出了一种分裂和诱导方法,以解决小规模量子计算机的更大问题。具体而言,我们将变异量子量化器(VQE)与系统维度的降低相连,其中分隔子系统之间的相互作用被视为随着减少基础扩展的有效哈密顿量。然后,有效的哈密顿量由VQE进一步解决,我们称之为Deep VQE。 Deep VQE使我们能够在小型量子计算机上应用量子型混合算法,以在具有较强的子宫内相互作用和弱化系统间相互作用或在大型常规晶格上强烈相关的自旋模型。作为原则证明的证明,我们使用了提出的准单维模型的方法,包括在Kagome晶格上的一维耦合的12 Qubit Heisenberg抗恒星模型以及二维Heisenberg Heisenberg抗抗氧化剂模型。通过模拟20量量子计算机的最大问题大小为64码位,以相当良好的精度〜几%。提出的方案使我们能够通过将VQE与几十吨的VQ串联来处理> 1000吨的问题。尽管尚不清楚如何获得如此大的系统可以获得基础状态的准确性,但我们在64 Quit的系统上的数值结果表明,深VQE提供了良好的近似值(几个百分之几以内的差异),并且有进一步改进的空间。因此,Deep VQE为我们提供了一种有希望的途径,可以解决嘈杂的中间量子计算机上实际上重要的问题。
We propose a divide-and-conquer method for the quantum-classical hybrid algorithm to solve larger problems with small-scale quantum computers. Specifically, we concatenate a variational quantum eigensolver (VQE) with a reduction in the system dimension, where the interactions between divided subsystems are taken as an effective Hamiltonian expanded by the reduced basis. Then the effective Hamiltonian is further solved by VQE, which we call deep VQE. Deep VQE allows us to apply quantum-classical hybrid algorithms on small-scale quantum computers to large systems with strong intra-subsystem interactions and weak inter-subsystem interactions, or strongly correlated spin models on large regular lattices. As proof-of-principle numerical demonstrations, we use the proposed method for quasi one-dimensional models, including one-dimensionally coupled 12-qubit Heisenberg anti-ferromagnetic models on Kagome lattices as well as two-dimensional Heisenberg anti-ferromagnetic models on square lattices. The largest problem size of 64 qubits is solved by simulating 20-qubit quantum computers with a reasonably good accuracy ~ a few %. The proposed scheme enables us to handle the problems of >1000 qubits by concatenating VQEs with a few tens of qubits. While it is unclear how accurate ground state energy can be obtained for such a large system, our numerical results on a 64-qubit system suggest that deep VQE provides a good approximation (discrepancy within a few percent) and has a room for further improvement. Therefore, deep VQE provides us a promising pathway to solve practically important problems on noisy intermediate-scale quantum computers.