论文标题
在部分平行类中,部分Steiner三重系统
On partial parallel classes in partial Steiner triple systems
论文作者
论文摘要
对于整数$ρ$,以使$ 1 \ leqρ\ leq v/3 $,定义$β(ρ,v)$是任何部分steiner triple System在$ v $点上的最大块数,其中最大部分平行类别具有$ρ$ $ρ$。我们通过给出明确的结构来获得$β(ρ,v)$的下限,而$β(ρ,v)$的上限是由计数参数产生的。我们表明,如果$ρ$是常数,则$β(ρ,v)\inθ(v)$,而$β(ρ,v)\inθ(v^2)$如果$ρ= v/c $,其中$ c $是一个常数。当$ρ$是一个常数时,我们在$β(ρ,v)$上的上限和下限会因取决于$ρ$的常数而有所不同。最后,我们将结果应用于$β(ρ,v)$,以获得无限的可测序部分施泰纳三重系统。
For an integer $ρ$ such that $1 \leq ρ\leq v/3$, define $β(ρ,v)$ to be the maximum number of blocks in any partial Steiner triple system on $v$ points in which the maximum partial parallel class has size $ρ$. We obtain lower bounds on $β(ρ,v)$ by giving explicit constructions, and upper bounds on $β(ρ,v)$ result from counting arguments. We show that $β(ρ,v) \in Θ(v)$ if $ρ$ is a constant, and $β(ρ,v) \in Θ(v^2)$ if $ρ= v/c$, where $c$ is a constant. When $ρ$ is a constant, our upper and lower bounds on $β(ρ,v)$ differ by a constant that depends on $ρ$. Finally, we apply our results on $β(ρ,v)$ to obtain infinite classes of sequenceable partial Steiner triple systems.