论文标题

旋转环形晶格中的Bose-Einstein冷凝水:多模型

Bose-Einstein condensates in rotating ring-shaped lattices: a multimode model

论文作者

Nigro, M, Capuzzi, P, Jezek, D M

论文摘要

我们开发了一个多模型模型,该模型描述了旋转的玻色网凝结物上的动力学,该冷凝水被限制在带有较大填充数的环形光学晶格上。使用完整的3D Gross-Pitaevskii模拟获得了模型的参数作为旋转频率的函数。从这样的数值计算中,我们提取在每个位点诱导的速度场,并分析模型的跳跃参数和PEIERLS阶段之间的关系和差异。为此,以几何术语进行了对此类阶段的详细讨论,该术语考虑了不同配置的连接位置。对于圆形对称的现场密度,对于任意数量的位点,发现跳跃和角动量之间的简单分析关系。最后,我们与GROSS-PITAEVSKII模拟相遇,以发现完美的一致性。

We develop a multimode model that describes the dynamics on a rotating Bose-Einstein condensate confined by a ring-shaped optical lattice with large filling numbers. The parameters of the model are obtained as a function of the rotation frequency using full 3D Gross-Pitaevskii simulations. From such numerical calculations, we extract the velocity field induced at each site and analyze the relation and the differences between the phase of the hopping parameter of our model and the Peierls phase. To this end, a detailed discussion of such phases is presented in geometrical terms which takes into account the position of the junctions for different configurations. For circularly symmetric onsite densities a simple analytical relation between the hopping phase and the angular momentum is found for arbitrary number of sites. Finally, we confront the results of the rotating multimode model dynamics with Gross-Pitaevskii simulations finding a perfect agreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源