论文标题

受约束的晶体深卷积生成对抗网络,用于晶体结构的逆设计

Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures

论文作者

Long, Teng, Fortunato, Nuno M., Opahle, Ingo, Zhang, Yixuan, Samathrakis, Ilias, Shen, Chen, Gutfleisch, Oliver, Zhang, Hongbin

论文摘要

具有所需属性的自主材料发现是材料科学的最终目标之一,目前的研究主要集中在基于密度功能理论计算的高通量筛选上,并使用机器学习对物理性质进行正向建模。应用深度学习技术,我们开发了一种生成模型,该模型可以通过优化潜在空间中的地层能量来预测不同的稳定晶体结构。已经证明,可以将物理属性的优化作为自身筛选或向后传播器集成到生成模型中,均具有自己的优势。在二进制BI-SE系统上应用生成模型表明,可以获得覆盖整个组成范围的不同晶体结构,并且在生成的结构饱满以达到平衡后,可以再现凸壳上的相位。该方法可以扩展到多组分系统以进行多目标优化,这为实现具有最佳属性的材料的反向设计铺平了道路。

Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modelling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backwards propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源