论文标题
铝纳米风险中紫外线模式的电子能量损失
Electron-Energy Loss of Ultraviolet Plasmonic Modes in Aluminum Nanodisks
论文作者
论文摘要
我们理论上研究了铝纳米虫中紫外线表面模式的电子能损谱(EEL)。使用全波模拟,我们研究了直径对纳米虫共振模式的影响。我们发现,模式行为可以分别分别针对两种不同的情况进行分类:(1)直径远小于厚度的平坦纳米虫; (2)直径与厚度相当的厚纳米虫。虽然先前已经使用基于薄膜堆栈的表面等离子体极性(SPP)模式来解释了平坦纳米结构的多极边缘模式和呼吸模式,但已经发现,多极边缘模式的真实分散性关系与SPP分散关系显着不同。在这里,我们开发了一种修改的直观模型,该模型使用有效的波长理论来准确地对该分散关系进行建模,与全波电磁模拟相比,计算开销明显较小。但是,对于较厚的纳米风险,这种有效的波长理论分解了,这种直观的模型不再可行。我们发现这是因为厚的纳米虫的某些模式具有极性(即沿基板平面或沿电子束方向)的依赖性,并且不能简单地分为径向呼吸模式或角(Azimuthal)多极边缘模式。这种极性依赖性导致辐射损失,激励同时使用厚纳米结构的复杂模式行为时同时使用鳗鱼和阴极发光测量。
We theoretically investigated electron energy loss spectroscopy (EELS) of ultraviolet surface plasmon modes in aluminum nanodisks. Using full-wave simulations, we studied the impact of diameter on the resonant modes of the nanodisks. We found that the mode behavior can be separately classified for two distinct cases: (1) flat nanodisks where the diameter is much less than the thickness; and (2) thick nanodisks where the diameter is comparable to the thickness. While the multipolar edge modes and breathing modes of flat nanostructures have previously been interpreted using intuitive, analytical models based on surface plasmon polariton (SPP) modes of a thin-film stack, it has been found that the true dispersion relation of the multipolar edge modes deviates significantly from the SPP dispersion relation. Here, we developed a modified intuitive model that uses effective wavelength theory to accurately model this dispersion relation with significantly less computational overhead compared to full-wave electromagnetic simulations. However, for the case of thick nanodisks, this effective wavelength theory breaks down, and such intuitive models are no longer viable. We found that this is because some modes of the thick nanodisks carry a polar (i.e. out of the substrate plane, or along the electron beam direction) dependence and cannot be simply categorized as radial breathing modes or angular (azimuthal) multipolar edge modes. This polar dependence leads to radiative losses, motivating the use of simultaneous EELS and cathodoluminescence measurements when experimentally investigating the complex mode behavior of thick nanostructures.