论文标题

AFGL 2591和AFGL 2136中热分子气体的高分辨率红外光谱:在圆盘的内部区域积聚围绕巨大的年轻恒星物体

High Resolution Infrared Spectroscopy of Hot Molecular Gas in AFGL 2591 and AFGL 2136: Accretion in the Inner Regions of Disks Around Massive Young Stellar Objects

论文作者

Barr, Andrew G., Boogert, Adwin, DeWitt, Curtis N., Montiel, Edward, Richter, Matthew J., Lacy, John H., Neufeld, David A., Indriolo, Nick, Pendleton, Yvonne, Chiar, Jean, Tielens, Alexander G. G. M.

论文摘要

我们对与大量原始质体AFGL 2591和AFGL 2136相关的热分子气体进行了高分辨率4-13美元的光谱调查,并利用Echelon-Cross-echelle-echelle-spectrograph(EXES)在板层层次观测机上用于层流观测机构,以及ISCHECHERSERMOTION (Texes)在NASA红外望远镜设施(IRTF)上。在这里,我们通过对CO,HCN,C $ _2 $ H $ _2 $,NH $ _3 $和CS的分析进行了调查的结果,从而得出了每个物种的物理条件。同样在IRTF中,提出了AFGL 2591 $ 3 $ $ $的ISHELL数据,显示HCN和C $ _2 $ H $ _2 $的排放。在EXES和Texes数据中,所有物种都被吸收检测到,并且发现温度和丰度较高(分别为600 K和10 $^{ - 6} $)。对于HCN和C $ _2 $ h $ _2 $,测量追踪相同基态水平的过渡量的差异的差异。已知中红外连续体源于磁盘,因此我们将红外吸收归因于磁盘的光球发生。由于吸收线需要向外降低温度梯度,因此我们得出结论,由于积聚而导致的粘性加热将磁盘在平面中加热。我们将近红外发射线归因于磁盘光球上层的分子散射。吸收线在50 au处的磁盘特性在高温气相化学中进行。丰度与Herbig磁盘内部磁盘的化学模型一致。

We have performed a high resolution 4-13 $μm$ spectral survey of the hot molecular gas associated with the massive protostars AFGL 2591 and AFGL 2136, utilising the Echelon-Cross-Echelle-Spectrograph (EXES) on-board the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the iSHELL instrument and Texas Echelon Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF). Here we present results of this survey with analysis of CO, HCN, C$_2$H$_2$, NH$_3$ and CS, deriving the physical conditions for each species. Also from the IRTF, iSHELL data at 3 $μm$ for AFGL 2591 are presented that show HCN and C$_2$H$_2$ in emission. In the EXES and TEXES data, all species are detected in absorption, and temperatures and abundances are found to be high (600 K and 10$^{-6}$, respectively). Differences of up to an order of magnitude in the abundances of transitions that trace the same ground state level are measured for HCN and C$_2$H$_2$. The mid-infrared continuum is known to originate in a disk, hence we attribute the infrared absorption to arise in the photosphere of the disk. As absorption lines require an outwardly decreasing temperature gradient, we conclude that the disk is heated in the mid-plane by viscous heating due to accretion. We attribute the near-IR emission lines to scattering by molecules in the upper layers of the disk photosphere. The absorption lines trace the disk properties at 50 AU where a high temperature gas-phase chemistry is taking place. Abundances are consistent with chemical models of the inner disk of Herbig disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源