论文标题
稀疏签名,具有非正交大规模访问的正向错误校正编码
Sparse Signatures with Forward Error Correction Coding for Non-Orthogonal Massive Access
论文作者
论文摘要
在大量包装包的大规模连接场景中,您感兴趣的是用户以非正交方式共享无线资源的政权。小小的有效载荷与零星用户激活相结合的方法,可以共同解决用户访问共享资源和频道代码设计的方法。在本文中,我们提出了一种传输方案,该方案将稀疏特征与有限长度的正向误差校正(FEC)编码进行了非正交大规模访问。我们的签名设计基于Euler Asquares,这是准环状部分几何形状的特殊实例,这些几何形状产生具有有利的解码属性的稀疏图。遵循图理论方法,我们将编码方案的好处用于涉及联合用户检测和解码的接收器处理。所提出的构造是灵活的,可以明确特征在系统参数的大量组合中,适用于基于赠款和无赠款的大规模访问。最后,与常见的现有方案不同,我们的方案可以应用于未包含的随机访问(U-RA)。我们从数字上表征系统参数之间的权衡,例如用户数量,加载和通道编码率。对艺术状态的性能评估说明了该方案为U-RA提供节能解决方案的潜力。
In massive connectivity scenarios with short packets, of interest is the regime where users share wireless resources in a non-orthogonal fashion. Small payloads combined with sporadic user activation call for approaches that jointly address the users access to the shared resources and the design of the channel code. In this paper, we propose a transmission scheme that combines sparse signatures with finite-length forward error correction (FEC) coding for non-orthogonal massive access. Our signature design is based on Euler squares, which are special instances of quasi-cyclic partial geometries that yield sparse graphs with favorable decoding properties. Following a graph-theoretic approach, we explicate the benefits of the coding scheme for the receiver processing that involves joint user detection and decoding. The proposed construction is flexible and can be explicitly characterized for a large number of combinations of system parameters, suitable for both grant-based and grant-free massive access. Finally, unlike common existing schemes, our scheme can be applied to unsourced random access (U-RA). We numerically characterize the trade-off between system parameters such as number of users, load and channel coding rate. The performance evaluation against the state of the art illustrates the potential of the scheme to provide an energy-efficient solution for U-RA.