论文标题
Endo-Sim2real:基于一致性学习的仪器段适应性
Endo-Sim2Real: Consistency learning-based domain adaptation for instrument segmentation
论文作者
论文摘要
内窥镜视频中的手术工具分割是计算机辅助干预系统的重要组成部分。使用完全监督的深度学习方法基于图像的解决方案的最新成功可以归因于大标签数据集的收集。但是,大型真实视频数据集的注释可能非常昂贵且耗时。计算机仿真可以减轻手动标记问题,但是,在模拟数据上训练的模型不会推广到真实数据。这项工作提出了一个基于一致性的框架,用于联合学习模拟和真实(未标记的)内窥镜数据,以弥合此性能泛化问题。对两个数据集(胆管80和intovis'15数据集的15个视频)的经验结果突出了所提出的\ emph {endo-sim2real}方法的有效性。我们将所提出方法的细分与最先进的解决方案进行比较,并表明我们的方法在质量和数量方面都改善了分割。
Surgical tool segmentation in endoscopic videos is an important component of computer assisted interventions systems. Recent success of image-based solutions using fully-supervised deep learning approaches can be attributed to the collection of big labeled datasets. However, the annotation of a big dataset of real videos can be prohibitively expensive and time consuming. Computer simulations could alleviate the manual labeling problem, however, models trained on simulated data do not generalize to real data. This work proposes a consistency-based framework for joint learning of simulated and real (unlabeled) endoscopic data to bridge this performance generalization issue. Empirical results on two data sets (15 videos of the Cholec80 and EndoVis'15 dataset) highlight the effectiveness of the proposed \emph{Endo-Sim2Real} method for instrument segmentation. We compare the segmentation of the proposed approach with state-of-the-art solutions and show that our method improves segmentation both in terms of quality and quantity.