论文标题

数值相对性中位移和自旋重力记忆的计算

Computation of Displacement and Spin Gravitational Memory in Numerical Relativity

论文作者

Mitman, Keefe, Moxon, Jordan, Scheel, Mark A., Teukolsky, Saul A., Boyle, Michael, Deppe, Nils, Kidder, Lawrence E., Throwe, William

论文摘要

我们介绍了使用光谱方法产生的二进制黑洞合并的第一个数值相对性波形,既显示位移又显示自旋记忆效应。明确地,我们使用SXS Collaboration的$ \ texttt {spec} $代码来运行二进制黑洞合并的Cauchy进化,然后使用$ \ texttt {pectertt {pecter} $的cauchy-caracteristic-caracteristic faractiantic feartaction提取引力波应变。我们发现,我们可以准确地解决该菌株的传统$ M = 0 $内存模式,以及一些以前仅被理论化的$ M \ not = 0 $振动记忆模式。我们还使用方程来对邦迪 - 米茨纳 - 齐射的电荷以及渐近无穷大的能量和角动量通量进行单独计算。我们的新计算仅使用引力波应变和无穷大的两个Weyl标量。同样,该计算表明,可以将内存模式理解为整个二进制的灵感和合并阶段中的内存信号的组合,以及在环down阶段附近的准模式信号。此外,我们发现,如先前的猜想,磁性存储器的数值误差确实为零。最后,我们发现Ligo,Einstein望远镜(ET)和激光干涉仪空间天线(LISA)具有这些新波形和新的存储器计算的激光干涉仪空间天线(LISA)的记忆比率比以前的预期大于纽约后或最小波形模型。

We present the first numerical relativity waveforms for binary black hole mergers produced using spectral methods that show both the displacement and the spin memory effects. Explicitly, we use the SXS Collaboration's $\texttt{SpEC}$ code to run a Cauchy evolution of a binary black hole merger and then extract the gravitational wave strain using $\texttt{SpECTRE}$'s version of a Cauchy-characteristic extraction. We find that we can accurately resolve the strain's traditional $m=0$ memory modes and some of the $m\not=0$ oscillatory memory modes that have previously only been theorized. We also perform a separate calculation of the memory using equations for the Bondi-Metzner-Sachs charges as well as the energy and angular momentum fluxes at asymptotic infinity. Our new calculation uses only the gravitational wave strain and two of the Weyl scalars at infinity. Also, this computation shows that the memory modes can be understood as a combination of a memory signal throughout the binary's inspiral and merger phases, and a quasinormal mode signal near the ringdown phase. Additionally, we find that the magnetic memory, up to numerical error, is indeed zero as previously conjectured. Lastly, we find that signal-to-noise ratios of memory for LIGO, the Einstein Telescope (ET), and the Laser Interferometer Space Antenna (LISA) with these new waveforms and new memory calculation are larger than previous expectations based on post-Newtonian or Minimal Waveform models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源