论文标题
随机噪音的拔河游戏课程
A Course on Tug-of-War Games with Random Noise
论文作者
论文摘要
这是以下工作中第2章的预先印刷:Marta Lewicka,一门随机噪音的拔河比赛课程,2020年,Springer,经施普林格自然瑞士AG的许可。 我们介绍了线性电位理论与随机步行之间的基本关系。由ITO,DOOB,LEVY等开发的这种基本联系依赖于通过平均值属性表示的谐波功能和Martingales具有共同取消属性的观察结果。事实证明,通过适当的修改,在非线性情况下也可以采用类似的观察和方法,这在我们的课程注释中是主要的兴趣。因此,本章是对更复杂的非线性结构熟悉的垫脚石。 在回忆起谐波功能的等效定义特性后,我们引入了球步行。这是一个无限的地平线离散过程,在每个步骤中,粒子最初放置在一个$ x_0 $中的粒子中,在开放的,有限的域$ \ nathcal {d} \ subset \ subset \ subset \ mathbb {r}^n $中,随机地随机地置于一个新的位置,并在当前的nius $中均匀地分布在$中,并与nipe $相等。边界$ \ partial \ Mathcal {D} $。使用概率一个,此类过程会在$ \ partial \ Mathcal {d} $和$ u^ε(x_0)$上累积,然后将其定义为在流程限制位置下给定边界数据$ f $的预期值。每个函数$ u^ε$都是谐波,如果$ \ partial \ mathcal {d} $是常规的,则每个$ u^ε$与$ \ Mathcal {d} $的唯一谐波扩展相吻合。规律性的一个足够条件是外部锥体状况。
This is a preprint of Chapter 2 in the following work: Marta Lewicka, A Course on Tug-of-War Games with Random Noise, 2020, Springer, reproduced with permission of Springer Nature Switzerland AG. We present the basic relation between the linear potential theory and random walks. This fundamental connection, developed by Ito, Doob, Levy and others, relies on the observation that harmonic functions and martingales share a common cancellation property, expressed via mean value properties. It turns out that, with appropriate modifications, a similar observation and approach can be applied also in the nonlinear case, which is of main interest in our Course Notes. Thus, the present Chapter serves as a stepping stone towards gaining familiarity with more complex nonlinear constructions. After recalling the equivalent defining properties of harmonic functions, we introduce the ball walk. This is an infinite horizon discrete process, in which at each step the particle, initially placed at some point $x_0$ in the open, bounded domain $\mathcal{D}\subset\mathbb{R}^N$, is randomly advanced to a new position, uniformly distributed within the following open ball: centered at the current placement, and with radius equal to the minimum of the parameter $ε$ and the distance from the boundary $\partial\mathcal{D}$. With probability one, such process accumulates on $\partial\mathcal{D}$ and $u^ε(x_0)$ is then defined as the expected value of the given boundary data $F$ at the process limiting position. Each function $u^ε$ is harmonic, and if $\partial\mathcal{D}$ is regular, then each $u^ε$ coincides with the unique harmonic extension of $F$ in $\mathcal{D}$. One sufficient condition for regularity is the exterior cone condition.