论文标题
单图像摄像头校准的神经几何解析器
Neural Geometric Parser for Single Image Camera Calibration
论文作者
论文摘要
我们建议一个神经几何解析器学习人造场景的单图像摄像头校准。与以前仅依赖于从神经网络获得的语义提示的神经方法不同,我们的方法考虑了语义和几何提示,从而可以提高准确性。提出的框架由两个网络组成。使用图像的线段作为几何提示,第一个网络估计了Zenith消失点,并生成了由相机旋转和焦距组成的几个候选者。第二个网络根据给定的图像和几何提示评估每个候选者,其中使用人造场景的先验知识用于评估。通过对图像的水平线和焦距组成的数据集的监督,我们的网络可以训练以估算相同的相机参数。根据曼哈顿世界的假设,我们可以以弱监督的方式进一步估算摄像机旋转和焦距。实验结果表明,对于室内和室外场景的单个图像,我们的神经方法的性能明显高于现有的最新摄像头校准技术的性能。
We propose a neural geometric parser learning single image camera calibration for man-made scenes. Unlike previous neural approaches that rely only on semantic cues obtained from neural networks, our approach considers both semantic and geometric cues, resulting in significant accuracy improvement. The proposed framework consists of two networks. Using line segments of an image as geometric cues, the first network estimates the zenith vanishing point and generates several candidates consisting of the camera rotation and focal length. The second network evaluates each candidate based on the given image and the geometric cues, where prior knowledge of man-made scenes is used for the evaluation. With the supervision of datasets consisting of the horizontal line and focal length of the images, our networks can be trained to estimate the same camera parameters. Based on the Manhattan world assumption, we can further estimate the camera rotation and focal length in a weakly supervised manner. The experimental results reveal that the performance of our neural approach is significantly higher than that of existing state-of-the-art camera calibration techniques for single images of indoor and outdoor scenes.