论文标题

ADER:自适应蒸馏的示例重播,以基于会话的建议的持续学习

ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation

论文作者

Mi, Fei, Lin, Xiaoyu, Faltings, Boi

论文摘要

由于隐私问题的增加,基于会话的建议最近受到了越来越多的关注。尽管基于神经会话的推荐人最近取得了成功,但它们通常是使用静态数据集以离线方式开发的。但是,建议需要持续的适应来考虑新的和过时的项目和用户,并且需要在现实生活应用中“持续学习”。在这种情况下,推荐人将不断地和定期更新,并在每个更新周期中到达新数据,并且更新的模型需要在下一个模型更新之前为用户活动提供建议。通过神经模型进行持续学习的一个主要挑战是灾难性的遗忘,其中不断训练的模型忘记了以前学到的用户偏好模式。为了应对这一挑战,我们提出了一种称为自适应蒸馏示例重播(ADER)的方法,通过定期将先前的训练样本(即示例)重播到当前模型中,并具有自适应的蒸馏损失。实验是基于最先进的SASREC模型进行的,使用两个广泛使用的数据集用几种众所周知的持续学习技术对ADER进行基准测试。我们从经验上证明,Ader始终优于其他基线,并且在每个更新周期中使用所有历史数据都超过了该方法。该结果表明,ADER是一种有希望的解决方案,可以减轻灾难性的遗忘问题,以建立更现实和可扩展的基于会话的推荐人。

Session-based recommendation has received growing attention recently due to the increasing privacy concern. Despite the recent success of neural session-based recommenders, they are typically developed in an offline manner using a static dataset. However, recommendation requires continual adaptation to take into account new and obsolete items and users, and requires "continual learning" in real-life applications. In this case, the recommender is updated continually and periodically with new data that arrives in each update cycle, and the updated model needs to provide recommendations for user activities before the next model update. A major challenge for continual learning with neural models is catastrophic forgetting, in which a continually trained model forgets user preference patterns it has learned before. To deal with this challenge, we propose a method called Adaptively Distilled Exemplar Replay (ADER) by periodically replaying previous training samples (i.e., exemplars) to the current model with an adaptive distillation loss. Experiments are conducted based on the state-of-the-art SASRec model using two widely used datasets to benchmark ADER with several well-known continual learning techniques. We empirically demonstrate that ADER consistently outperforms other baselines, and it even outperforms the method using all historical data at every update cycle. This result reveals that ADER is a promising solution to mitigate the catastrophic forgetting issue towards building more realistic and scalable session-based recommenders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源