论文标题
旋转黑洞和紧凑型恒星的量子点粒子近似
Quantum point particle approximation of spinning black holes and compact stars
论文作者
论文摘要
针对紧凑型二元合并的引力波观测值,例如Ligo和处女座,需要各种理论输入来有效检测。这样的输入之一是对足够分离的轨道尺度(通常称为牛顿后动力学)的二进制动力学的分析描述。确定这种两体有效哈密顿量的一种方法是使用量子散射幅度。 该论文旨在提高对量子散射幅度中旋转物体的经典物理学的了解,以应用于有效的两体汉密尔顿人的问题。主要重点将放在自旋诱导的高阶多极矩上。在此论文结果中,第一个后的后订单(牛顿常数$ g $中的线性以及相对动量$ p^2 $中的所有订单)hamiltonian对旋转中所有旋转订单的任意紧凑型体有效。接下来,基于等效的环路量子量子磁场理论计算,讨论了公式扩展到第二后期后秩序的阻塞和前景。 本文基于作品[1-4]。
Gravitational wave observatories targeted for compact binary coalescence, such as LIGO and VIRGO, require various theoretical inputs for their efficient detection. One of such inputs are analytical description of binary dynamics at sufficiently separated orbital scales, commonly known as post-Newtonian dynamics. One approach for determining such two-body effective Hamiltonians is to use quantum scattering amplitudes. This dissertation aims at an improved understanding of classical physics of spinning bodies in quantum scattering amplitudes, for application to the problem of effective two-body Hamiltonians. The main focus will be on spin-induced higher-order multipole moments. In this dissertation results for the first post-Minkowskian order (linear in Newton's constant $G$ and to all orders in relative momentum $p^2$) Hamiltonian that is valid for arbitrary compact spinning bodies to all orders in spin is presented. Next, obstruction and prospects for the formulation's extension to second post-Minkowskian order is discussed, based on an equivalent loop order quantum field theory computations. This dissertation is based on the works [1-4].