论文标题
与因子模型相比,幼稚的回归需要弱的假设才能调整多种原因混淆
Naïve regression requires weaker assumptions than factor models to adjust for multiple cause confounding
论文作者
论文摘要
在具有多种处理的观察环境中,使用因子模型调整了共享,未观察的混杂因素,$ \ mathbf {z} $的经验实践,在包括遗传学,网络,医学和政治等领域中广泛存在于具有多种处理的观察环境中。 Wang and Blei(2019,WB)对这些程序进行了形式化,并开发了“ DeNefounder”,这是一种因素推理方法,使用$ \ MathBf {a} $的因子模型来估算“替代混杂因素”,$ \ hat {\ hat {\ Mathbf {z}} $,然后估算$ nmats $ nmatage,y Matha $ \ mathbf {a} $在为$ \ hat {\ mathbf {z}} $调整时。 WB声称当没有单一原因混杂因子和$ \ hat {\ mathbf {z}} $是“精确点”时,deonfounder是公正的。我们阐明精确的点需要每个混杂因素影响许多治疗方法。我们在这些假设下证明了$ \ m arthbf {a} $在$ \ mathbf {y} $上的幼稚的半摩托回归是渐近的。因此,嵌套此回归的deconfounder变体也是渐近公正的,但是使用$ \ hat {\ mathbf {z}} $的变体,原因是原因的子集需要进一步的不可测试的假设。我们通过可用数据复制每个反面分析,发现它无法始终超过幼稚的回归。在实践中,Deconfrounder在WB的案例研究中对电影收入产生了令人难以置信的估计值:估计表明,漫画作者Stan Lee的客串出现因果贡献\ 155亿美元,这是Marvel电影收入的大部分。我们得出结论,这两种方法都是在现实世界应用中仔细研究设计的可行替代品。
The empirical practice of using factor models to adjust for shared, unobserved confounders, $\mathbf{Z}$, in observational settings with multiple treatments, $\mathbf{A}$, is widespread in fields including genetics, networks, medicine, and politics. Wang and Blei (2019, WB) formalizes these procedures and develops the "deconfounder," a causal inference method using factor models of $\mathbf{A}$ to estimate "substitute confounders," $\hat{\mathbf{Z}}$, then estimating treatment effects by regressing the outcome, $\mathbf{Y}$, on part of $\mathbf{A}$ while adjusting for $\hat{\mathbf{Z}}$. WB claim the deconfounder is unbiased when there are no single-cause confounders and $\hat{\mathbf{Z}}$ is "pinpointed." We clarify pinpointing requires each confounder to affect infinitely many treatments. We prove under these assumptions, a naïve semiparametric regression of $\mathbf{Y}$ on $\mathbf{A}$ is asymptotically unbiased. Deconfounder variants nesting this regression are therefore also asymptotically unbiased, but variants using $\hat{\mathbf{Z}}$ and subsets of causes require further untestable assumptions. We replicate every deconfounder analysis with available data and find it fails to consistently outperform naïve regression. In practice, the deconfounder produces implausible estimates in WB's case study to movie earnings: estimates suggest comic author Stan Lee's cameo appearances causally contributed \$15.5 billion, most of Marvel movie revenue. We conclude neither approach is a viable substitute for careful research design in real-world applications.