论文标题

具有深神网络的液体氩时间投影室中的增强信号处理

Augmented Signal Processing in Liquid Argon Time Projection Chambers with a Deep Neural Network

论文作者

Yu, Haiwang, Bishai, Mary, Gu, Wenqiang, Lin, Meifeng, Qian, Xin, Ren, Yihui, Scarpelli, Andrea, Viren, Brett, Wei, Hanyu, Yu, Hongzhao, Yu, Kwang Min, Zhang, Chao

论文摘要

液体氩时间投影室(LARTPC)是一种高级中微子检测器技术,在最近和即将进行的加速器中微子实验中广泛使用。它具有低能阈值和高空间分辨率,可全面重建事件拓扑。在电流产生的LARTPC中,记录的数据由诱导信号在漂移电离电子的电线产生的电线上的数字化波形组成,这也可以看作是二维(2D)(时间与电线)投影轨迹的投影图像。对于这样的成像检测器,一个关键步骤是信号处理,该信号处理重建了从记录的2D图像中重建原始电荷投影。我们第一次在LARTPC信号处理中引入了深层神经网络,以改善感兴趣的检测信号区域。通过结合域知识(例如,来自多个电线平面的匹配信息)和深度学习,该方法对传统方法显示出显着改善。这项工作详细介绍了使用现实的检测器模拟评估的方法,软件工具和性能。

The Liquid Argon Time Projection Chamber (LArTPC) is an advanced neutrino detector technology widely used in recent and upcoming accelerator neutrino experiments. It features a low energy threshold and high spatial resolution that allow for comprehensive reconstruction of event topologies. In current-generation LArTPCs, the recorded data consist of digitized waveforms on wires produced by induced signal on wires of drifting ionization electrons, which can also be viewed as two-dimensional (2D) (time versus wire) projection images of charged-particle trajectories. For such an imaging detector, one critical step is the signal processing that reconstructs the original charge projections from the recorded 2D images. For the first time, we introduce a deep neural network in LArTPC signal processing to improve the signal region of interest detection. By combining domain knowledge (e.g., matching information from multiple wire planes) and deep learning, this method shows significant improvements over traditional methods. This work details the method, software tools, and performance evaluated with realistic detector simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源