论文标题
人口游戏中设计的灾难:破坏浪费的锁定技术
Catastrophe by Design in Population Games: Destabilizing Wasteful Locked-in Technologies
论文作者
论文摘要
在所需协调的多机构环境中,游戏的历史通常会导致锁定在最佳结果上。众所周知,尽管成功地发展了更加环保和/或社会有效的替代方案,但具有重要环境足迹或高社会成本的技术仍然存在。牢固的经济利益和网络影响阻碍了现状的位移。为了加剧问题,标准机制设计方法基于具有优先补贴有效决定系统结果的中央政府的中央政府,并不总是适用于现代分散的经济体。其他哪些类型的机制是可行的?在本文中,我们开发并分析了一种机制,该机制可导致从效率低下的锁定到优质替代方案的过渡。这种机制并不能外源性地偏爱一种选择,而不是另一种选择 - 相反,相变是通过标准进化学习模型,Q学习的内源性出现的,在该模型中,代理权衡探索和剥削。对高效和效率低下的技术产生相同的瞬态影响会促进勘探和导致不可逆的相变和有效效率的永久稳定。从技术层面上讲,我们的工作基于分叉和灾难理论,这是数学的一个分支,涉及平衡的数量和稳定性的变化。至关重要的是,我们的分析在结构上对我们游戏和行为模型的参数构成了重要甚至对抗性的扰动。
In multi-agent environments in which coordination is desirable, the history of play often causes lock-in at sub-optimal outcomes. Notoriously, technologies with a significant environmental footprint or high social cost persist despite the successful development of more environmentally friendly and/or socially efficient alternatives. The displacement of the status quo is hindered by entrenched economic interests and network effects. To exacerbate matters, the standard mechanism design approaches based on centralized authorities with the capacity to use preferential subsidies to effectively dictate system outcomes are not always applicable to modern decentralized economies. What other types of mechanisms are feasible? In this paper, we develop and analyze a mechanism that induces transitions from inefficient lock-ins to superior alternatives. This mechanism does not exogenously favor one option over another -- instead, the phase transition emerges endogenously via a standard evolutionary learning model, Q-learning, where agents trade-off exploration and exploitation. Exerting the same transient influence to both the efficient and inefficient technologies encourages exploration and results in irreversible phase transitions and permanent stabilization of the efficient one. On a technical level, our work is based on bifurcation and catastrophe theory, a branch of mathematics that deals with changes in the number and stability properties of equilibria. Critically, our analysis is shown to be structurally robust to significant and even adversarially chosen perturbations to the parameters of both our game and our behavioral model.