论文标题

Arakelov-Nevanlinna的不平等现象,用于霍奇结构和应用的变化

Arakelov-Nevanlinna inequalities for variations of Hodge structures and applications

论文作者

Brotbek, Damian, Brunebarbe, Yohan

论文摘要

我们证明,对于任何日志平滑的投影对$(x,d)$,我们证明了第二个主定理类型不等式,因此$ x \ setminus d $支持霍奇结构的复杂两极化变化。这可以看作是Arakelov不平等的Nevanlinna理论类似物,因为由于Deligne,Peters和Jost-Zuo而导致的霍奇结构变化。作为一种应用,我们在这种情况下获得了一种夸张的标准,我们用来得出纳德尔众所周知的双曲性结果的广泛概括。我们证明的第一种成分是对于任何日志平滑的投影对$(x,d)$的第二个主定理类型不等式,因此$ x \ setminus d $ d $支持一个公制,其全体形态截面曲率以负常数为界。我们证明的第二个成分是根据hodge结构变体构建的griffiths-schmid公制的全态截面曲率的明确结合。作为我们方法的副产品,我们还建立了对Pairs $(x,d)$的第二个主要定理类型不等式,以便将$ x \ setminus d $夸张地嵌入$ x $中。

We prove a Second Main Theorem type inequality for any log-smooth projective pair $(X,D)$ such that $X\setminus D$ supports a complex polarized variation of Hodge structures. This can be viewed as a Nevanlinna theoretic analogue of the Arakelov inequalities for variations of Hodge structures due to Deligne, Peters and Jost-Zuo. As an application, we obtain in this context a criterion of hyperbolicity that we use to derive a vast generalization of a well-known hyperbolicity result of Nadel. The first ingredient of our proof is a Second Main Theorem type inequality for any log-smooth projective pair $(X,D)$ such that $X\setminus D$ supports a metric whose holomorphic sectional curvature is bounded from above by a negative constant. The second ingredient of our proof is an explicit bound on the holomorphic sectional curvature of the Griffiths-Schmid metric constructed from a variation of Hodge structures. As a byproduct of our approach, we also establish a Second Main Theorem type inequality for pairs $(X,D)$ such that $X\setminus D$ is hyperbolically embedded in $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源