论文标题
纳米热动力学简介:异质和有限系统的热平衡
An introduction to nanothermodynamics: Thermal equilibrium for heterogeneous and finite-sized systems
论文作者
论文摘要
小型系统热力学的理论最初是为了将热力学定律扩展到纳米长度的长度。在这里,我们回顾了这种“纳米热动力学”,并强调它如何适用于大型系统,该系统将我们称为“区域”的内部子系统的异质分布。我们强调的是,大多数系统的真正热平衡通常要求这些区域在完全开放的广义合奏中,区域大小的分布不受外部约束,我们称之为“纳米渠道”集合。我们关注纳米热力学如何影响特定模型的统计力学。一个例子是大容量中无法区分的原子的理想气体,将可变体积的小区域的集合细分为一个,其中包含与其他区域的原子不同的区域。结合这种细分区域可产生正确的混合熵,避免吉布斯悖论,而无需诉诸于半古典粒子的宏观量子对称性。其他模型基于类似ISIN的旋转(二进制自由度),这些旋转在一维中进行了分析解决,使其成为统计物理学入门课程的合适示例。一个关键的结果是,当大系统细分为可变大小的小区域时,熵的净增加。另一个结果是在纳米式集合中的两态模型的平衡特性和规范集合中的三态模型中显示出相似性。因此,新兴现象可能会改变微观模型的热行为,而正确的合奏对于准确的预测是必要的。
The theory of small-system thermodynamics was originally developed to extend the laws of thermodynamics to length scales of nanometers. Here we review this "nanothermodynamics," and stress how it also applies to large systems that subdivide into a heterogeneous distribution of internal subsystems that we call "regions." We emphasize that the true thermal equilibrium of most systems often requires that these regions are in the fully-open generalized ensemble, with a distribution of region sizes that is not externally constrained, which we call the "nanocanonical" ensemble. We focus on how nanothermodynamics impacts the statistical mechanics of specific models. One example is an ideal gas of indistinguishable atoms in a large volume that subdivides into an ensemble of small regions of variable volume, with separate regions containing atoms that are distinguishable from those in other regions. Combining such subdivided regions yields the correct entropy of mixing, avoiding Gibbs paradox without resorting to macroscopic quantum symmetry for semi-classical particles. Other models are based on Ising-like spins (binary degrees of freedom), which are solved analytically in one-dimension, making them suitable examples for introductory courses in statistical physics. A key result is to quantify the net increase in entropy when large systems subdivide into small regions of variable size. Another result is to show similarity in the equilibrium properties of a two-state model in the nanocanonical ensemble and a three-state model in the canonical ensemble. Thus, emergent phenomena may alter the thermal behavior of microscopic models, and the correct ensemble is necessary for accurate predictions.