论文标题
最好的低级近似值和kolmogorov n宽度
Best low-rank approximations and Kolmogorov n-widths
论文作者
论文摘要
我们将矩阵$ a $ a $与Kolmogorov $ n $ widths和相应的最佳空间相关联的频谱规范中最佳的低级别近似问题。我们表征了欧几里得单位球的图像的所有最佳空间,$ a $ a $,我们表明,在$ n $维的最佳最佳空间中的任何正常基础都会产生最佳排名-n $ n $ n $近似于$ a $。我们还提出了一个简单明了的结构,以获得一系列最佳$ n $维空间,一旦知道初始最佳空间。这导致了各种解决方案,以解决最佳的低级近似问题,并为截断的奇异值分解提供了替代方案。可以利用该品种以获得具有问题为导向的特性的最佳低级近似值。
We relate the problem of best low-rank approximation in the spectral norm for a matrix $A$ to Kolmogorov $n$-widths and corresponding optimal spaces. We characterize all the optimal spaces for the image of the Euclidean unit ball under $A$ and we show that any orthonormal basis in an $n$-dimensional optimal space generates a best rank-$n$ approximation to $A$. We also present a simple and explicit construction to obtain a sequence of optimal $n$-dimensional spaces once an initial optimal space is known. This results in a variety of solutions to the best low-rank approximation problem and provides alternatives to the truncated singular value decomposition. This variety can be exploited to obtain best low-rank approximations with problem-oriented properties.