论文标题

潜在的意外建议

Latent Unexpected Recommendations

论文作者

Li, Pan, Tuzhilin, Alexander

论文摘要

意外的推荐系统构成了解决过滤气泡和用户无聊问题的重要工具,该工具旨在同时为目标用户提供意外且令人满意的建议。以前的意外建议方法仅通过对特征空间中的意外性进行建模,从而关注当前建议和用户期望之间的直接关系,从而导致准确度量的丧失,以提高意外性性能。与这些先前模型形成鲜明对比的是,我们建议在用户和物品嵌入的潜在空间中建模意外事,从而可以捕获新建议和历史购买之间的隐藏和复杂关系。此外,我们开发了一种新型的潜在闭合方法(LC)方法来构建混合效用函数,并根据所提出的模型提供意外的建议。在三个现实世界数据集上进行的广泛实验说明了我们提出的方法优于最先进的意外建议模型,这导致意外度衡量标准的显着增加而不牺牲本文所有实验环境下的任何精确度度量。

Unexpected recommender system constitutes an important tool to tackle the problem of filter bubbles and user boredom, which aims at providing unexpected and satisfying recommendations to target users at the same time. Previous unexpected recommendation methods only focus on the straightforward relations between current recommendations and user expectations by modeling unexpectedness in the feature space, thus resulting in the loss of accuracy measures in order to improve unexpectedness performance. Contrast to these prior models, we propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases. In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model. Extensive experiments on three real-world datasets illustrate superiority of our proposed approach over the state-of-the-art unexpected recommendation models, which leads to significant increase in unexpectedness measure without sacrificing any accuracy metric under all experimental settings in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源