论文标题
狭窄的无柄液滴的通用溶解动力学
Universal dissolution dynamics of a confined sessile droplet
论文作者
论文摘要
我们在不可渗透的垂直限制的影响下实验研究了微观无麦克塞尔酒精液滴在水中的溶解。与非限制的对应物相比,限制的引入抑制了从液滴到块状培养基的大规模运输。与浮力羽流相同,流动可视化表明,新鉴定的机制 - 悬浮的环形涡流阻碍了受约束液滴的溶解。由于涡旋诱导的障碍而引起的流动的形态变化改变了溶解速率,从而增强了液滴寿命。此外,我们已经在关键的非二维参数(瑞利号$ ra^{'} $(表示浮力)和Sherwood Number $ sh^{'} $(表示质量的质量)和液滴生命$τ_{C}^{'} $基于lineal complate的lodection('}^$基于lineal complient的周围的周围('} $),我们已经提出了修改。考虑到限制的几何形状,$ΔC^{'} $)。我们表明,在垂直限制下液滴溶解的实验结果证实了通用缩放关系$ sh^{'} \ sim ra^{'1/4} $和$τ_{c}^{'} \simΔC^{'-5/4} $。我们还提请人们注意以下事实:在本工作中提出的限制的修订缩放定律可以扩展到其他已知的构型,例如在一系列通道维度内的液滴溶解,例如在诸如微流体技术和生物医学工程等应用中遇到的那样。
We experimentally investigate the dissolution of microscale sessile alcohol droplets in water under the influence of impermeable vertical confinement. The introduction of confinement suppresses the mass transport from the droplet to bulk medium in comparison with the non-confined counterpart. Along with a buoyant plume, flow visualization reveals that the dissolution of a confined droplet is hindered by a newly identified mechanism - levitated toroidal vortex. The morphological changes in the flow due to the vortex-induced impediment alters the dissolution rate, resulting in enhancement of droplet lifetime. Further, we have proposed a modification in the key non-dimensional parameters (Rayleigh number $Ra^{'}$ (signifying buoyancy) and Sherwood number $Sh^{'}$ (signifying mass flux)) and droplet lifetime $τ_{c}^{'}$, based on the hypothesis of linearly stratified droplet surroundings (with revised concentration difference $ΔC^{'}$), taking into account the geometry of the confinements. We show that experimental results on droplet dissolution under vertical confinement corroborate universal scaling relations $Sh^{'} \sim Ra^{' 1/4}$ and $τ_{c}^{'} \sim ΔC^{'-5/4}$. We also draw attention to the fact that the revised scaling law incorporating the geometry of confinements proposed in the present work can be extended to other known configurations such as droplet dissolution inside a range of channel dimensions, as encountered in a gamut of applications such as micro-fluidic technology and biomedical engineering.