论文标题

合作NOMA的深度多任务学习:系统设计和原理

Deep Multi-Task Learning for Cooperative NOMA: System Design and Principles

论文作者

Lu, Yuxin, Cheng, Peng, Chen, Zhuo, Mow, Wai Ho, Li, Yonghui, Vucetic, Branka

论文摘要

被设想为未来无线互联网(IoT)网络的有前途的组成部分,非正交多访问(NOMA)技术可以支持大规模连通性,而光谱效率显着提高。合作社Noma能够进一步提高频道条件下用户的沟通可靠性。但是,传统的系统设计遭受了几种固有的局限性,并且没有从位错误率(BER)的角度进行优化。在本文中,我们开发了一种新颖的深度合作NOMA计划,借鉴了深度学习的最新进展(DL)。我们开发了一种新颖的混合型深神经网络(DNN)结构,使整个系统可以整体化。在此基础上,我们构建了多个损失功能来量化BER性能,并提出了一种新型的以多任务为导向的两阶段训练方法,以自我监督的方式解决端到端训练问题。然后,根据信息理论对每个DNN模块的学习机制进行分析,从而提供了对拟议的DNN体系结构及其相应训练方法的见解。我们还适应了提出的方案,以处理训练和推理之间的功率分配(PA)不匹配,并将其与通道编码合并以打击信号恶化。在各种情况下,仿真结果验证了其优于正交多重访问(OMA)和常规合作NOMA方案的优势。

Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this paper, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the proposed DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源