论文标题
使用日历信息的嵌入神经网络中的日历信息的短期和长期预测
Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks
论文作者
论文摘要
电价在很大程度上取决于不同时间尺度的季节性,因此,对电价的任何预测都必须考虑到它。事实证明,神经网络在短期价格销售方面取得了成功,但是像LSTM这样的复杂体系结构用于整合季节性行为。本文表明,简单的神经网络体系结构(如DNN)具有嵌入式层的季节性信息,可以产生竞争性的预测。日历信息的基于嵌入的处理还为电力交易中神经网络的新应用程序(例如价格远期曲线的生成)打开了新的应用程序。除了理论基础外,本文还为应用程序提供了一项关于德国电力市场的经验多年研究,并从嵌入式层中获得了经济的见解。研究表明,在短期价格销售中,具有嵌入层的拟议神经网络的平均绝对误差优于LSTM和时间序列基准模型,甚至是具有复杂的超参数优化的最佳基准模型。使用Friedman和Holm测试的统计分析支持了结果。
Electricity prices strongly depend on seasonality of different time scales, therefore any forecasting of electricity prices has to account for it. Neural networks have proven successful in short-term price-forecasting, but complicated architectures like LSTM are used to integrate the seasonal behaviour. This paper shows that simple neural network architectures like DNNs with an embedding layer for seasonality information can generate a competitive forecast. The embedding-based processing of calendar information additionally opens up new applications for neural networks in electricity trading, such as the generation of price forward curves. Besides the theoretical foundation, this paper also provides an empirical multi-year study on the German electricity market for both applications and derives economical insights from the embedding layer. The study shows that in short-term price-forecasting the mean absolute error of the proposed neural networks with an embedding layer is better than the LSTM and time-series benchmark models and even slightly better as our best benchmark model with a sophisticated hyperparameter optimization. The results are supported by a statistical analysis using Friedman and Holm's tests.