论文标题

更快的均值移位速度:基于余弦的细胞分割和跟踪的GPU加速聚类

Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking

论文作者

Zhao, Mengyang, Jha, Aadarsh, Liu, Quan, Millis, Bryan A., Mahadevan-Jansen, Anita, Lu, Le, Landman, Bennett A., Tyskac, Matthew J., Huo, Yuankai

论文摘要

最近,基于单级嵌入的深度学习算法在细胞分割和跟踪中越来越关注。与传统的“段 - 接触”两阶段方法相比,单阶段算法不仅可以同时实现一致的实例细胞分割和跟踪,而且在区分边界和重叠的模棱两可的像素时会获得较高的性能。但是,基于嵌入的算法的部署受到缓慢的推理速度(例如,每帧约1-2分钟)的限制。在这项研究中,我们提出了一种新颖的均值移位算法,该算法可以解决基于嵌入的细胞分割和跟踪的计算瓶颈。与以前的GPU加速快速偏移算法不同,引入了新的在线种子优化策略(OSOP),以自适应地确定种子数量最少,加速计算和保存GPU内存。通过来自ISBI细胞跟踪挑战的四个队列的嵌入模拟和经验验证,与基于最新的基于嵌入的细胞实例分割和跟踪算法相比,提出的更快的平均移位算法达到了7-10倍的速度。与其他具有优化的内存消耗的GPU基准相比,我们更快的平均移位算法也达到了最高的计算速度。更快的平均移位速度是一种插件模型,可用于医学图像分析的其他基于像素嵌入的聚类推断。 (公开插件模型:https://github.com/masqm/faster-mean-shift)

Recently, single-stage embedding based deep learning algorithms gain increasing attention in cell segmentation and tracking. Compared with the traditional "segment-then-associate" two-stage approach, a single-stage algorithm not only simultaneously achieves consistent instance cell segmentation and tracking but also gains superior performance when distinguishing ambiguous pixels on boundaries and overlaps. However, the deployment of an embedding based algorithm is restricted by slow inference speed (e.g., around 1-2 mins per frame). In this study, we propose a novel Faster Mean-shift algorithm, which tackles the computational bottleneck of embedding based cell segmentation and tracking. Different from previous GPU-accelerated fast mean-shift algorithms, a new online seed optimization policy (OSOP) is introduced to adaptively determine the minimal number of seeds, accelerate computation, and save GPU memory. With both embedding simulation and empirical validation via the four cohorts from the ISBI cell tracking challenge, the proposed Faster Mean-shift algorithm achieved 7-10 times speedup compared to the state-of-the-art embedding based cell instance segmentation and tracking algorithm. Our Faster Mean-shift algorithm also achieved the highest computational speed compared to other GPU benchmarks with optimized memory consumption. The Faster Mean-shift is a plug-and-play model, which can be employed on other pixel embedding based clustering inference for medical image analysis. (Plug-and-play model is publicly available: https://github.com/masqm/Faster-Mean-Shift)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源