论文标题

音频到得分对齐的混合方法

A Hybrid Approach to Audio-to-Score Alignment

论文作者

Agrawal, Ruchit, Dixon, Simon

论文摘要

音频到得分对齐旨在在性能音频和给定曲目的分数之间产生准确的映射。标准对齐方法基于动态时间扭曲(DTW)和采用手工制作的功能。我们探讨了神经网络的用法,作为基于DTW的自动对准方法的预处理步骤。来自不同声学条件的音乐数据的实验表明,该方法同时可以生成健壮的比对,同时具有适应性。

Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features. We explore the usage of neural networks as a preprocessing step for DTW-based automatic alignment methods. Experiments on music data from different acoustic conditions demonstrate that this method generates robust alignments whilst being adaptable at the same time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源