论文标题
Ferromagnets CRI3,CRBR3,Crgete3和抗铁磁铁FECL2的关键行为:一项详细的第一原理研究
Critical behavior of ferromagnets CrI3, CrBr3, CrGeTe3, and anti-ferromagnet FeCl2: a detailed first-principles study
论文作者
论文摘要
我们计算层状铁磁体,三碘铬(CRI3),三溴铬(CRBR3),三甲酯铬(Crgete3)(crgete3)和使用第一二氯酸铁(Fecl2)的层状温度和使用第一型理论的核心温度。我们开发了一种计算方法,以对分层磁性材料中的磁相互作用进行建模并计算其临界温度。我们提供了一种统一的方法,以从第一原理中获得有效的海森伯格汉密尔顿,并考虑到磁性不合适的磁性异位以及平面外的相互作用。我们通过使用三维蒙特卡洛(Metropolis)算法计算得出的磁相变行为,尤其是临界温度,特别是临界温度。计算出的铁磁材料(CRI3,CRBR3和Crgete3)的居里温度与实验值非常匹配。我们表明,与实验观察结果一致,散装CRI3中的层间相互作用明显强于C2/M堆栈。我们表明,R3 CRI中的强层间相互作用会导致面板内部和平面磁性易于轴之间的竞争。最后,我们计算FECL2的NEEL温度为47 +-8 K,并表明FECL2中的磁相变为具有高温内部内部磁磁相变的两个步骤,并且是低温层间层中层抗铁磁性抗磁性相变。
We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3), chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Neel temperature of a layered anti-ferromagnet iron di-chloride (FeCl2), using first-principles density functional theory calculations and Monte-Carlo simulations. We develop a computational method to model the magnetic interactions in layered magnetic materials and calculate their critical temperature. We provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg Hamiltonian from first-principles, taking into account both the magnetic ansiotropy as well as the out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional Monte-Carlo (Metropolis) algorithm. The calculated Curie temperatures for ferromagnetic materials (CrI3, CrBr3 and CrGeTe3), match very well with experimental values. We show that the interlayer interaction in bulk CrI3 with R3 stacking is significantly stronger than the C2/m stacking, in line with experimental observations. We show that the strong interlayer interaction in R3 CrI results in a competition between the in-plane and the out-of-plane magnetic easy axis. Finally, we calculate the Neel temperature of FeCl2 to be 47 +- 8 K, and show that the magnetic phase transition in FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition, and a low-temperature interlayer anti-ferromagnetic phase transition.