论文标题

朝着对语言用户界面的生态有效研究

Towards Ecologically Valid Research on Language User Interfaces

论文作者

de Vries, Harm, Bahdanau, Dzmitry, Manning, Christopher

论文摘要

语言用户界面(LUIS)可以改善各种任务的人机互动,例如播放音乐,从数据库中获得见解或指导家庭机器人。与传统的手工制作方法相反,最近的工作尝试使用现代深度学习方法以数据驱动的方式构建路易斯。为了满足此类学习算法的数据需求,研究人员构建了基准,这些基准强调了收集的数据的数量,其自然性和与现实世界LUI用例相关的成本。结果,此类基准的研究结果可能与开发实用的路易斯无关。本文的目的是引导有关此问题的讨论,我们将其称为基准的低生态有效性。为此,我们描述了我们认为对Luis的机器学习研究的理想方法,并对最近的基准偏离它的五种常见方式进行了分类。我们给出了五种偏差及其后果的具体例子。最后,我们提供了许多建议,以提高如何提高有关路易斯的机器学习研究的生态有效性。

Language User Interfaces (LUIs) could improve human-machine interaction for a wide variety of tasks, such as playing music, getting insights from databases, or instructing domestic robots. In contrast to traditional hand-crafted approaches, recent work attempts to build LUIs in a data-driven way using modern deep learning methods. To satisfy the data needs of such learning algorithms, researchers have constructed benchmarks that emphasize the quantity of collected data at the cost of its naturalness and relevance to real-world LUI use cases. As a consequence, research findings on such benchmarks might not be relevant for developing practical LUIs. The goal of this paper is to bootstrap the discussion around this issue, which we refer to as the benchmarks' low ecological validity. To this end, we describe what we deem an ideal methodology for machine learning research on LUIs and categorize five common ways in which recent benchmarks deviate from it. We give concrete examples of the five kinds of deviations and their consequences. Lastly, we offer a number of recommendations as to how to increase the ecological validity of machine learning research on LUIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源