论文标题
Sasakian流形的基本群体的表示形式的几乎正式和变形
Almost-formality and deformations of representations of the fundamental groups of Sasakian manifolds
论文作者
论文摘要
对于$ 2N+1美元的紧凑型Sasakian歧管(如果$ n \ ge 2 $),我们证明每个半简单表示的基本组的各种代表性的分析胚芽都是Quadratic的。为了证明这一结果,我们证明了Sasakian歧管的De Rham复合物几乎具有正常性,并具有半简单平坦载体束中的值。通过几乎格式,我们还证明了在紧凑的Sasakian歧管上半简单平坦矢量束的杯子产物的消失定理。
For a $2n+1$-dimensional compact Sasakian manifold, if $n\ge 2$, we prove that the analytic germ of the variety of representations of the fundamental group at every semi-simple representation is quadratic. To prove this result, we prove the almost-formality of de Rham complex of a Sasakian manifold with values in a semi-simple flat vector bundle. By the almost-formality, we also prove the vanishing theorem on the cup product of the cohomology of semi-simple flat vector bundles over a compact Sasakian manifold.