论文标题
量子和半经典动力学作为流体理论,其中量规很重要
Quantum and semiclassical dynamics as fluid theories where gauge matters
论文作者
论文摘要
计算量子物理和化学中使用的基于轨迹的近似家庭非常多样化。例如,博米安和海勒的冷冻高斯半古典轨迹似乎没有任何共同点。基于与量子力学的流体动力类比,我们提供了所有此类模型的统一仪表理论。鉴于这一理论,目前已知的方法只是冰山一角,并且存在一个无限的基于轨迹的方法。具体而言,我们表明,半经典轨迹的每个定义对应于特定的流体动力类比,其中量子系统映射到相空间中的有效概率流体。我们得出代表任意开放骨体多体系统动力学的有效流体的连续性方程。我们表明,与常规流体不同,有效流体的通量定义为Skodje的规格[R. T. Skodje等。 al。物理。修订版A 40,2894(1989)]。我们证明,量子力学的Wigner,Husimi和Bohmian表示是我们通用流体力学类比的特殊情况,并且它们之间的所有差异都降低到量规选择。无限的仪表是可能的,每个测量值都导致了独特的量子水动力类比和半经典轨迹的定义。我们提出了一个方案,以识别实际有用的测量值并将其应用于量子多体模拟中使用的半经典初始值表示。
The family of trajectories-based approximations employed in computational quantum physics and chemistry is very diverse. For instance, Bohmian and Heller's frozen Gaussian semiclassical trajectories seem to have nothing in common. Based on a hydrodynamic analogy to quantum mechanics, we furnish the unified gauge theory of all such models. In the light of this theory, currently known methods are just a tip of the iceberg, and there exists an infinite family of yet unexplored trajectory-based approaches. Specifically, we show that each definition for a semiclassical trajectory corresponds to a specific hydrodynamic analogy, where a quantum system is mapped to an effective probability fluid in the phase space. We derive the continuity equation for the effective fluid representing dynamics of an arbitrary open bosonic many-body system. We show that unlike in conventional fluid, the flux of the effective fluid is defined up to Skodje's gauge [R. T. Skodje et. al. Phys. Rev. A 40, 2894 (1989)]. We prove that the Wigner, Husimi and Bohmian representations of quantum mechanics are particular cases of our generic hydrodynamic analogy, and all the differences among them reduce to the gauge choice. Infinitely many gauges are possible, each leading to a distinct quantum hydrodynamic analogy and a definition for semiclassical trajectories. We propose a scheme for identifying practically useful gauges and apply it to improve a semiclassical initial value representation employed in quantum many-body simulations.