论文标题
麦克斯韦方程的基于Chebyshev
A Chebyshev-based High-order-accurate Integral Equation Solver for Maxwell's Equations
论文作者
论文摘要
本文介绍了一种新方法,用于离散和求解麦克斯韦方程的积分方程式公式,该方程达到光滑表面的光谱精度。该方法基于使用Chebyshev多项式的混合NYSTRöm-Colocation方法,以在曲线四边形的四边形表面贴片上扩大未知的电流密度。例如,将提出的策略分别应用于磁场积分方程(MFIE)和N-Müller公式,以分别从金属和介电对象散射。研究了几种不同的几何形状的收敛性,包括从CAD软件中进口的球体,立方体和复杂的NURBS几何形状,并将结果与使用RWG基础函数的商业方法求解器进行比较。
This paper introduces a new method for discretizing and solving integral equation formulations of Maxwell's equations which achieves spectral accuracy for smooth surfaces. The approach is based on a hybrid Nyström-collocation method using Chebyshev polynomials to expand the unknown current densities over curvilinear quadrilateral surface patches. As an example, the proposed strategy is applied the to Magnetic Field Integral Equation (MFIE) and the N-Müller formulation for scattering from metallic and dielectric objects, respectively. The convergence is studied for several different geometries, including spheres, cubes, and complex NURBS geometries imported from CAD software, and the results are compared against a commercial Method-of-Moments solver using RWG basis functions.