论文标题
具有非参数不确定性的稳健线性估计:平均和最差的性能(完整版)
Robust Linear Estimation with Non-parametric Uncertainty: Average and Worst-case Performance (Full Version)
论文作者
论文摘要
在本文中,考虑了三种类型的线性估计量,涉及与$ \ Mathcal {h} _ {2} $和$ \ Mathcal {h} _ {\ h} _ {\ infty} $ foruseer-Responses $ Balls相关的估计问题。面临的问题对应于鲁棒的$ \ Mathcal {h} _ {2} $和$ \ Mathcal {h} _ {\ infty} $,面对非参数“通道模式”的“不确定性”,以及名义上的$ \ natiminal $ \ nation $ \ nathcal {h} _ _ {\ infty} $估算问题。此处考虑的估计器是通过在“不确定性集”上最小化最坏情况平方估计误差来定义的,并在约束下将平均成本最小化,即任何可允许的估计器的最坏情况误差都不超过规定的值。要点是探索估计器的推导,这些估计器可能被视为最小值估计器的保守替代方案,或者换句话说,可以在不确定性集的“大”子集上进行最差的性能和更好的性能之间的权衡。超过$ \ MATHCAL {H} _ {2} - $信号球的“平均成本”是作为平均值的限制,因为它们的长度不受限制。这两种类型的估计器以及此处解决的三个问题的估计器设计问题是半准编程问题(简称SDP)。在简单示例的情况下,解决了这些SDP,以说明“平均成本/最差约束”估计量减轻最小值估计器的固有保守性的潜力。
In this paper, two types of linear estimators are considered for three related estimation problems involving set-theoretic uncertainty pertaining to $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ balls of frequency-responses. The problems at stake correspond to robust $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ in the face of non-parametric "channel-model" uncertainty and to a nominal $\mathcal{H}_{\infty}$ estimation problem. The estimators considered here are defined by minimizing the worst-case squared estimation error over the "uncertainty set" and by minimizing an average cost under the constraint that the worst-case error of any admissible estimator does not exceed a prescribed value. The main point is to explore the derivation of estimators which may be viewed as less conservative alternatives to minimax estimators, or in other words, that allow for trade-offs between worst-case performance and better performance over "large" subsets of the uncertainty set. The "average costs" over $\mathcal{H}_{2}-$signal balls are obtained as limits of averages over sets of finite impulse responses, as their length grows unbounded. The estimator design problems for the two types of estimators and the three problems addressed here are recast as semi-definite programming problems (SDPs, for short). These SDPs are solved in the case of simple examples to illustrate the potential of the "average cost/worst-case constraint" estimators to mitigate the inherent conservatism of the minimax estimators.